Matches in SemOpenAlex for { <https://semopenalex.org/work/W1993489871> ?p ?o ?g. }
- W1993489871 endingPage "11717" @default.
- W1993489871 startingPage "11710" @default.
- W1993489871 abstract "In an approach directed to isolate and characterize key proteins of the transduction cascade in photoreceptors using the phosphoinositide signaling pathway, we have isolated the Calliphora homolog of the Drosophila InaD gene product, which in Drosophila InaD mutants causes slow deactivation of the light response. By screening a retinal cDNA library with antibodies directed against photoreceptor membrane proteins, we have isolated a cDNA coding for an amino acid sequence of 665 residues (Mr = 73,349). The sequence displays 65.3% identity (77.3% similarity) with the Drosophila InaD gene product. Probing Western blots with monospecific antibodies directed against peptides comprising amino acids 272-542 (anti-InaD-(272-542)) or amino acids 643-655 (anti-InaD-(643-655)) of the InaD gene product revealed that the Calliphora InaD protein is specifically associated with the signal-transducing rhabdomeral photoreceptor membrane from which it can be extracted by high salt buffer containing 1.5 M NaCl. As five out of eight consensus sequences for protein kinase C phosphorylation reside within stretches of 10-16 amino acids that are identical in the Drosophila and Calliphora InaD protein, the InaD gene product is likely to be a target of protein kinase C. Phosphorylation studies with isolated rhabdomeral photoreceptor membranes followed by InaD immunoprecipitation revealed that the InaD protein is a phosphoprotein. In vitro phosphorylation is, at least to some extent, Ca2+-dependent and activated by phorbol 12-myristate 13-acetate. The inaC-encoded eye-specific form of a protein kinase C (eye-PKC) is co-precipitated by antibodies specific for the InaD protein from detergent extracts of rhabdomeral photoreceptor membranes, suggesting that the InaD protein and eye-PKC are interacting in these membranes. Co-precipitating with the InaD protein and eye-PKC are two other key components of the transduction pathway, namely the trp protein, which is proposed to form a Ca2+ channel, and the norpA-encoded phospholipase C, the primary target enzyme of the transduction pathway. It is proposed that the rise of the intracellular Ca2+ concentration upon visual excitation initiates the phosphorylation of the InaD protein by eye-PKC and thereby modulates its function in the control of the light response. In an approach directed to isolate and characterize key proteins of the transduction cascade in photoreceptors using the phosphoinositide signaling pathway, we have isolated the Calliphora homolog of the Drosophila InaD gene product, which in Drosophila InaD mutants causes slow deactivation of the light response. By screening a retinal cDNA library with antibodies directed against photoreceptor membrane proteins, we have isolated a cDNA coding for an amino acid sequence of 665 residues (Mr = 73,349). The sequence displays 65.3% identity (77.3% similarity) with the Drosophila InaD gene product. Probing Western blots with monospecific antibodies directed against peptides comprising amino acids 272-542 (anti-InaD-(272-542)) or amino acids 643-655 (anti-InaD-(643-655)) of the InaD gene product revealed that the Calliphora InaD protein is specifically associated with the signal-transducing rhabdomeral photoreceptor membrane from which it can be extracted by high salt buffer containing 1.5 M NaCl. As five out of eight consensus sequences for protein kinase C phosphorylation reside within stretches of 10-16 amino acids that are identical in the Drosophila and Calliphora InaD protein, the InaD gene product is likely to be a target of protein kinase C. Phosphorylation studies with isolated rhabdomeral photoreceptor membranes followed by InaD immunoprecipitation revealed that the InaD protein is a phosphoprotein. In vitro phosphorylation is, at least to some extent, Ca2+-dependent and activated by phorbol 12-myristate 13-acetate. The inaC-encoded eye-specific form of a protein kinase C (eye-PKC) is co-precipitated by antibodies specific for the InaD protein from detergent extracts of rhabdomeral photoreceptor membranes, suggesting that the InaD protein and eye-PKC are interacting in these membranes. Co-precipitating with the InaD protein and eye-PKC are two other key components of the transduction pathway, namely the trp protein, which is proposed to form a Ca2+ channel, and the norpA-encoded phospholipase C, the primary target enzyme of the transduction pathway. It is proposed that the rise of the intracellular Ca2+ concentration upon visual excitation initiates the phosphorylation of the InaD protein by eye-PKC and thereby modulates its function in the control of the light response." @default.
- W1993489871 created "2016-06-24" @default.
- W1993489871 creator A5041229371 @default.
- W1993489871 creator A5044413337 @default.
- W1993489871 creator A5054073946 @default.
- W1993489871 date "1996-05-01" @default.
- W1993489871 modified "2023-10-08" @default.
- W1993489871 title "Phosphorylation of the InaD Gene Product, a Photoreceptor Membrane Protein Required for Recovery of Visual Excitation" @default.
- W1993489871 cites W1156084614 @default.
- W1993489871 cites W1506809239 @default.
- W1993489871 cites W1515430029 @default.
- W1993489871 cites W1573584799 @default.
- W1993489871 cites W1598381693 @default.
- W1993489871 cites W1620578262 @default.
- W1993489871 cites W1974003226 @default.
- W1993489871 cites W1975304761 @default.
- W1993489871 cites W1975714781 @default.
- W1993489871 cites W1983127589 @default.
- W1993489871 cites W1984764741 @default.
- W1993489871 cites W2002260905 @default.
- W1993489871 cites W2006842412 @default.
- W1993489871 cites W2007146740 @default.
- W1993489871 cites W2015075408 @default.
- W1993489871 cites W2021200445 @default.
- W1993489871 cites W2021798259 @default.
- W1993489871 cites W2022236187 @default.
- W1993489871 cites W2022864334 @default.
- W1993489871 cites W2025951865 @default.
- W1993489871 cites W2029880376 @default.
- W1993489871 cites W2034176125 @default.
- W1993489871 cites W2038394364 @default.
- W1993489871 cites W2042343877 @default.
- W1993489871 cites W2043864892 @default.
- W1993489871 cites W2059715283 @default.
- W1993489871 cites W2059883534 @default.
- W1993489871 cites W2060187601 @default.
- W1993489871 cites W2062367006 @default.
- W1993489871 cites W2063128262 @default.
- W1993489871 cites W2067923067 @default.
- W1993489871 cites W2073293904 @default.
- W1993489871 cites W2079794190 @default.
- W1993489871 cites W2081452457 @default.
- W1993489871 cites W2084398941 @default.
- W1993489871 cites W2091766637 @default.
- W1993489871 cites W2100837269 @default.
- W1993489871 cites W2116884918 @default.
- W1993489871 cites W2120664225 @default.
- W1993489871 cites W2124923401 @default.
- W1993489871 cites W2138270253 @default.
- W1993489871 cites W2147599690 @default.
- W1993489871 cites W2150691484 @default.
- W1993489871 doi "https://doi.org/10.1074/jbc.271.20.11710" @default.
- W1993489871 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/8662634" @default.
- W1993489871 hasPublicationYear "1996" @default.
- W1993489871 type Work @default.
- W1993489871 sameAs 1993489871 @default.
- W1993489871 citedByCount "88" @default.
- W1993489871 countsByYear W19934898712012 @default.
- W1993489871 countsByYear W19934898712013 @default.
- W1993489871 countsByYear W19934898712014 @default.
- W1993489871 countsByYear W19934898712016 @default.
- W1993489871 countsByYear W19934898712017 @default.
- W1993489871 countsByYear W19934898712020 @default.
- W1993489871 crossrefType "journal-article" @default.
- W1993489871 hasAuthorship W1993489871A5041229371 @default.
- W1993489871 hasAuthorship W1993489871A5044413337 @default.
- W1993489871 hasAuthorship W1993489871A5054073946 @default.
- W1993489871 hasBestOaLocation W19934898711 @default.
- W1993489871 hasConcept C104317684 @default.
- W1993489871 hasConcept C11960822 @default.
- W1993489871 hasConcept C131667965 @default.
- W1993489871 hasConcept C150194340 @default.
- W1993489871 hasConcept C153911025 @default.
- W1993489871 hasConcept C167625842 @default.
- W1993489871 hasConcept C187882448 @default.
- W1993489871 hasConcept C195286587 @default.
- W1993489871 hasConcept C195794163 @default.
- W1993489871 hasConcept C2780827179 @default.
- W1993489871 hasConcept C55493867 @default.
- W1993489871 hasConcept C71829478 @default.
- W1993489871 hasConcept C86803240 @default.
- W1993489871 hasConcept C87325107 @default.
- W1993489871 hasConcept C95444343 @default.
- W1993489871 hasConcept C97029542 @default.
- W1993489871 hasConceptScore W1993489871C104317684 @default.
- W1993489871 hasConceptScore W1993489871C11960822 @default.
- W1993489871 hasConceptScore W1993489871C131667965 @default.
- W1993489871 hasConceptScore W1993489871C150194340 @default.
- W1993489871 hasConceptScore W1993489871C153911025 @default.
- W1993489871 hasConceptScore W1993489871C167625842 @default.
- W1993489871 hasConceptScore W1993489871C187882448 @default.
- W1993489871 hasConceptScore W1993489871C195286587 @default.
- W1993489871 hasConceptScore W1993489871C195794163 @default.
- W1993489871 hasConceptScore W1993489871C2780827179 @default.
- W1993489871 hasConceptScore W1993489871C55493867 @default.
- W1993489871 hasConceptScore W1993489871C71829478 @default.
- W1993489871 hasConceptScore W1993489871C86803240 @default.
- W1993489871 hasConceptScore W1993489871C87325107 @default.