Matches in SemOpenAlex for { <https://semopenalex.org/work/W1993532948> ?p ?o ?g. }
- W1993532948 endingPage "524" @default.
- W1993532948 startingPage "512" @default.
- W1993532948 abstract "With spatially distributed hydrologic models the need arises for determining the channel cross section shape for the entire stream network. In the absence of cross section data, assumed or parameterized cross section shapes are often used. The effects of parameterized cross sections are evaluated in this study by developing a modeling framework that externally couples a spatially distributed hydrologic model, HL-RDHM, with a one-dimensional unsteady hydraulic model, HEC-RAS. The evaluation emphasizes the effects of parameterized cross sections on simulated flows by focusing the analysis on the portion of the basin’s main stream reach where detailed cross section data and observed streamflows (at both ends of the reach) are available, and by developing and testing three cross section scenarios. The scenarios are designed to increase sequentially, in a stepwise fashion, the complexity of the parameterized cross section, starting with a single roughness parameter and channel power law cross section shape and then including additional power law or roughness parameters. This is done stepwise to help distinguish the effects associated with each parameterization, and decide the required level of cross section detail. The scenario simulations are evaluated using split sampling, changes in measures of performance and hydrograph agreement, hypothesis tests on Nash–Sutcliffe values, and overall predictive uncertainty. The coupling framework is applied to the Blue and Illinois River basins, in Oklahoma, US. Overall, we found that in these basins the coupling tends to improve predictions when dynamic wave routing and floodplain cross section geometry are considered concurrently. For this scenario, we found that on average typical measures of model performance may be improved and, based on a quantitative and qualitative assessment, uncertainty may be reduced. We also found that dynamic wave routing does not tend to perform better than kinematic wave routing for the most basic scenarios with a single power law cross section shape. Further, results indicate that the distributed hydrologic model performance at the main outlet and at the upstream boundary of the hydraulic model, and the relative contribution of lateral inflows, are key factors that need to be considered when deciding the applicability of the coupled framework to other basins. In the future, to effectively use resources, it will be beneficial to automate the coupling and accompany its application with a priori criteria for selecting those basins where benefits are most likely." @default.
- W1993532948 created "2016-06-24" @default.
- W1993532948 creator A5040097394 @default.
- W1993532948 creator A5070788629 @default.
- W1993532948 date "2011-10-01" @default.
- W1993532948 modified "2023-10-13" @default.
- W1993532948 title "Evaluating the effects of parameterized cross section shapes and simplified routing with a coupled distributed hydrologic and hydraulic model" @default.
- W1993532948 cites W1587869157 @default.
- W1993532948 cites W1593043172 @default.
- W1993532948 cites W1615539232 @default.
- W1993532948 cites W1650785073 @default.
- W1993532948 cites W1657063761 @default.
- W1993532948 cites W1699750641 @default.
- W1993532948 cites W1758162760 @default.
- W1993532948 cites W1886162980 @default.
- W1993532948 cites W1916457060 @default.
- W1993532948 cites W1968513562 @default.
- W1993532948 cites W1971398942 @default.
- W1993532948 cites W1985591292 @default.
- W1993532948 cites W1994777546 @default.
- W1993532948 cites W2001390725 @default.
- W1993532948 cites W2004297607 @default.
- W1993532948 cites W2010873376 @default.
- W1993532948 cites W2014186869 @default.
- W1993532948 cites W2025815620 @default.
- W1993532948 cites W2033904036 @default.
- W1993532948 cites W2043222745 @default.
- W1993532948 cites W2094040832 @default.
- W1993532948 cites W2108630818 @default.
- W1993532948 cites W2112084830 @default.
- W1993532948 cites W2126715275 @default.
- W1993532948 cites W2130776051 @default.
- W1993532948 cites W2133594038 @default.
- W1993532948 cites W2139995385 @default.
- W1993532948 cites W2143671190 @default.
- W1993532948 cites W2145403675 @default.
- W1993532948 cites W2147048872 @default.
- W1993532948 cites W2150476828 @default.
- W1993532948 cites W2162413692 @default.
- W1993532948 cites W2166790957 @default.
- W1993532948 cites W2170707491 @default.
- W1993532948 cites W2316165902 @default.
- W1993532948 cites W2334833614 @default.
- W1993532948 cites W4253439878 @default.
- W1993532948 doi "https://doi.org/10.1016/j.jhydrol.2011.08.050" @default.
- W1993532948 hasPublicationYear "2011" @default.
- W1993532948 type Work @default.
- W1993532948 sameAs 1993532948 @default.
- W1993532948 citedByCount "38" @default.
- W1993532948 countsByYear W19935329482013 @default.
- W1993532948 countsByYear W19935329482014 @default.
- W1993532948 countsByYear W19935329482015 @default.
- W1993532948 countsByYear W19935329482016 @default.
- W1993532948 countsByYear W19935329482017 @default.
- W1993532948 countsByYear W19935329482018 @default.
- W1993532948 countsByYear W19935329482019 @default.
- W1993532948 countsByYear W19935329482020 @default.
- W1993532948 countsByYear W19935329482021 @default.
- W1993532948 countsByYear W19935329482022 @default.
- W1993532948 countsByYear W19935329482023 @default.
- W1993532948 crossrefType "journal-article" @default.
- W1993532948 hasAuthorship W1993532948A5040097394 @default.
- W1993532948 hasAuthorship W1993532948A5070788629 @default.
- W1993532948 hasConcept C111919701 @default.
- W1993532948 hasConcept C11413529 @default.
- W1993532948 hasConcept C121332964 @default.
- W1993532948 hasConcept C127162648 @default.
- W1993532948 hasConcept C127313418 @default.
- W1993532948 hasConcept C138885662 @default.
- W1993532948 hasConcept C154936535 @default.
- W1993532948 hasConcept C165464430 @default.
- W1993532948 hasConcept C187320778 @default.
- W1993532948 hasConcept C27206212 @default.
- W1993532948 hasConcept C2780129039 @default.
- W1993532948 hasConcept C31258907 @default.
- W1993532948 hasConcept C41008148 @default.
- W1993532948 hasConcept C52234038 @default.
- W1993532948 hasConcept C62520636 @default.
- W1993532948 hasConcept C74172769 @default.
- W1993532948 hasConcept C74256435 @default.
- W1993532948 hasConcept C76155785 @default.
- W1993532948 hasConcept C76886044 @default.
- W1993532948 hasConceptScore W1993532948C111919701 @default.
- W1993532948 hasConceptScore W1993532948C11413529 @default.
- W1993532948 hasConceptScore W1993532948C121332964 @default.
- W1993532948 hasConceptScore W1993532948C127162648 @default.
- W1993532948 hasConceptScore W1993532948C127313418 @default.
- W1993532948 hasConceptScore W1993532948C138885662 @default.
- W1993532948 hasConceptScore W1993532948C154936535 @default.
- W1993532948 hasConceptScore W1993532948C165464430 @default.
- W1993532948 hasConceptScore W1993532948C187320778 @default.
- W1993532948 hasConceptScore W1993532948C27206212 @default.
- W1993532948 hasConceptScore W1993532948C2780129039 @default.
- W1993532948 hasConceptScore W1993532948C31258907 @default.
- W1993532948 hasConceptScore W1993532948C41008148 @default.
- W1993532948 hasConceptScore W1993532948C52234038 @default.
- W1993532948 hasConceptScore W1993532948C62520636 @default.
- W1993532948 hasConceptScore W1993532948C74172769 @default.