Matches in SemOpenAlex for { <https://semopenalex.org/work/W1993766225> ?p ?o ?g. }
- W1993766225 endingPage "132" @default.
- W1993766225 startingPage "112" @default.
- W1993766225 abstract "In ordered systems, where the molecular motion is anisotropic, quadrupolar and dipolar interactions are not averaged to zero. In such cases, double quantum (DQ) coherences can be formed. This review deals mainly with the effect of anisotropic motion of water molecules and sodium ions in intact biological tissues on (2)H, (1)H and (23)Na NMR spectroscopy and its application to NMR imaging (MRI). Double quantum filtered (DQF) spectra of water molecules and sodium ions were detected in a variety of ordered biological tissues. In collagen-containing tissues such as ligaments, tendons, cartilage, skin, blood vessels and nerves, the DQ coherences are formed as a result of the interaction with the collagen fibers. In red blood cells and presumably also in nerve axons it stems from the interaction with the cytoskeleton. For (23)Na, an I = 3/2 nucleus, the DQ coherences can also be formed in isotropic media. By a judicial choice of the pulse angle in the DQ pulse sequence only the DQ coherences arising from anisotropic motion are detected. For I = 1 nuclei such as 2H, DQF spectra can be observed only in ordered structures. Thus, the observation of 2H DQF spectra is an indication of order. The same is true for pairs of equivalent 1H nuclei. The dependence of the DQF signal on the creation time of the double quantum coherences is characteristic to each tissue and allows signals to be resolved from different tissues by performing the measurements at different creation times. In this way, the 2H DQF signals of the different compartments of sciatic nerve were resolved and water diffusion in each compartment was studied independently. In the axon, the diffusion was heavily restricted perpendicular to the axon's long axis, a result from which the axon diameter could be deduced. In blood vessel walls, this characteristic enabled the different layers of the vessel to be viewed and studied under strain. For 2H, a DQF spectroscopic imaging sequence was used to study the orientation of the collagen fibers in the different zones of articular cartilage and bone plug. The effect of pressure on the fibers and their return to equilibrium was studied as well. In blood vessels, a DQF image was obtained and strain maps of the different layers were calculated. The efficiency of the 1H DQF imaging technique was demonstrated on a phantom of rat tail where only the four tendons were detected at short creation times. 1H DQF imaging and spectroscopy followed the healing of a rabbit's ruptured Achilles tendon and the results were far more sensitive to the process than conventional imaging. Finally, the method was implemented on a commercial whole body MRI spectrometer. Images of human wrist and ankle showed a positive contrast for the tendons and ligaments, indicating the potential of the method for clinical imaging. (c) 2001 John Wiley & Sons, Ltd." @default.
- W1993766225 created "2016-06-24" @default.
- W1993766225 creator A5001647850 @default.
- W1993766225 creator A5023879927 @default.
- W1993766225 creator A5041317749 @default.
- W1993766225 creator A5055299310 @default.
- W1993766225 date "2001-04-01" @default.
- W1993766225 modified "2023-10-05" @default.
- W1993766225 title "Multiquantum filters and order in tissues" @default.
- W1993766225 cites W1967595694 @default.
- W1993766225 cites W1969352513 @default.
- W1993766225 cites W1971061285 @default.
- W1993766225 cites W1971939937 @default.
- W1993766225 cites W1973684060 @default.
- W1993766225 cites W1975641018 @default.
- W1993766225 cites W1976063984 @default.
- W1993766225 cites W1978225787 @default.
- W1993766225 cites W1983064163 @default.
- W1993766225 cites W1986343058 @default.
- W1993766225 cites W1988193398 @default.
- W1993766225 cites W1988359708 @default.
- W1993766225 cites W1990758631 @default.
- W1993766225 cites W1993091673 @default.
- W1993766225 cites W1993801027 @default.
- W1993766225 cites W1994414176 @default.
- W1993766225 cites W1996882023 @default.
- W1993766225 cites W1997860607 @default.
- W1993766225 cites W1998620162 @default.
- W1993766225 cites W2005329786 @default.
- W1993766225 cites W2005566437 @default.
- W1993766225 cites W2006636196 @default.
- W1993766225 cites W2008329150 @default.
- W1993766225 cites W2009039636 @default.
- W1993766225 cites W2012723154 @default.
- W1993766225 cites W2016596708 @default.
- W1993766225 cites W2017153774 @default.
- W1993766225 cites W2020067709 @default.
- W1993766225 cites W2022686854 @default.
- W1993766225 cites W2028362202 @default.
- W1993766225 cites W2029951402 @default.
- W1993766225 cites W2030666163 @default.
- W1993766225 cites W2031385798 @default.
- W1993766225 cites W2033776881 @default.
- W1993766225 cites W2034202195 @default.
- W1993766225 cites W2034996484 @default.
- W1993766225 cites W2039194657 @default.
- W1993766225 cites W2039213393 @default.
- W1993766225 cites W2042223619 @default.
- W1993766225 cites W2043736572 @default.
- W1993766225 cites W2043989371 @default.
- W1993766225 cites W2045510287 @default.
- W1993766225 cites W2053345970 @default.
- W1993766225 cites W2055914459 @default.
- W1993766225 cites W2059715483 @default.
- W1993766225 cites W2068656271 @default.
- W1993766225 cites W2070983313 @default.
- W1993766225 cites W2071509269 @default.
- W1993766225 cites W2076627896 @default.
- W1993766225 cites W2076742402 @default.
- W1993766225 cites W2077081071 @default.
- W1993766225 cites W2078446470 @default.
- W1993766225 cites W2079041835 @default.
- W1993766225 cites W2079534993 @default.
- W1993766225 cites W2081245980 @default.
- W1993766225 cites W2086547732 @default.
- W1993766225 cites W2092734244 @default.
- W1993766225 cites W2093560194 @default.
- W1993766225 cites W2110816884 @default.
- W1993766225 cites W2119536685 @default.
- W1993766225 cites W2127386160 @default.
- W1993766225 cites W2135528858 @default.
- W1993766225 cites W2137072695 @default.
- W1993766225 cites W2144833092 @default.
- W1993766225 cites W2146136761 @default.
- W1993766225 cites W2163717000 @default.
- W1993766225 doi "https://doi.org/10.1002/nbm.687" @default.
- W1993766225 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/11320537" @default.
- W1993766225 hasPublicationYear "2001" @default.
- W1993766225 type Work @default.
- W1993766225 sameAs 1993766225 @default.
- W1993766225 citedByCount "135" @default.
- W1993766225 countsByYear W19937662252012 @default.
- W1993766225 countsByYear W19937662252013 @default.
- W1993766225 countsByYear W19937662252014 @default.
- W1993766225 countsByYear W19937662252015 @default.
- W1993766225 countsByYear W19937662252016 @default.
- W1993766225 countsByYear W19937662252017 @default.
- W1993766225 countsByYear W19937662252018 @default.
- W1993766225 countsByYear W19937662252019 @default.
- W1993766225 countsByYear W19937662252020 @default.
- W1993766225 countsByYear W19937662252021 @default.
- W1993766225 countsByYear W19937662252023 @default.
- W1993766225 crossrefType "journal-article" @default.
- W1993766225 hasAuthorship W1993766225A5001647850 @default.
- W1993766225 hasAuthorship W1993766225A5023879927 @default.
- W1993766225 hasAuthorship W1993766225A5041317749 @default.
- W1993766225 hasAuthorship W1993766225A5055299310 @default.
- W1993766225 hasBestOaLocation W19937662251 @default.