Matches in SemOpenAlex for { <https://semopenalex.org/work/W1993848799> ?p ?o ?g. }
- W1993848799 endingPage "60" @default.
- W1993848799 startingPage "38" @default.
- W1993848799 abstract "An infinite mixture of autoregressive models is developed. The unknown parameters in the mixture autoregressive model follow a mixture distribution, which is governed by a Dirichlet process prior. One main feature of our approach is the generalization of a finite mixture model by having the number of components unspecified. A Bayesian sampling scheme based on a weighted Chinese restaurant process is proposed to generate partitions of observations. Using the partitions, Bayesian prediction, while accounting for possible model uncertainty, determining the most probable number of mixture components, clustering of time series and outlier detection in time series, can be done. Numerical results from simulated and real data are presented to illustrate the methodology." @default.
- W1993848799 created "2016-06-24" @default.
- W1993848799 creator A5061166145 @default.
- W1993848799 creator A5062657762 @default.
- W1993848799 date "2008-09-01" @default.
- W1993848799 modified "2023-10-02" @default.
- W1993848799 title "Bayesian mixture of autoregressive models" @default.
- W1993848799 cites W1967687583 @default.
- W1993848799 cites W1969897498 @default.
- W1993848799 cites W1980264500 @default.
- W1993848799 cites W1990665143 @default.
- W1993848799 cites W2016608935 @default.
- W1993848799 cites W2031964861 @default.
- W1993848799 cites W2038885294 @default.
- W1993848799 cites W2049785185 @default.
- W1993848799 cites W2050654176 @default.
- W1993848799 cites W2053405531 @default.
- W1993848799 cites W2065246942 @default.
- W1993848799 cites W2065392216 @default.
- W1993848799 cites W2069429561 @default.
- W1993848799 cites W2072169887 @default.
- W1993848799 cites W2073960326 @default.
- W1993848799 cites W2082630584 @default.
- W1993848799 cites W2089484716 @default.
- W1993848799 cites W2089791520 @default.
- W1993848799 cites W2106706098 @default.
- W1993848799 cites W3099828247 @default.
- W1993848799 cites W4230306435 @default.
- W1993848799 cites W4237780050 @default.
- W1993848799 cites W4245916018 @default.
- W1993848799 cites W4246829438 @default.
- W1993848799 cites W4248679889 @default.
- W1993848799 cites W4251232855 @default.
- W1993848799 doi "https://doi.org/10.1016/j.csda.2008.06.001" @default.
- W1993848799 hasPublicationYear "2008" @default.
- W1993848799 type Work @default.
- W1993848799 sameAs 1993848799 @default.
- W1993848799 citedByCount "29" @default.
- W1993848799 countsByYear W19938487992012 @default.
- W1993848799 countsByYear W19938487992013 @default.
- W1993848799 countsByYear W19938487992014 @default.
- W1993848799 countsByYear W19938487992015 @default.
- W1993848799 countsByYear W19938487992016 @default.
- W1993848799 countsByYear W19938487992017 @default.
- W1993848799 countsByYear W19938487992018 @default.
- W1993848799 countsByYear W19938487992019 @default.
- W1993848799 countsByYear W19938487992020 @default.
- W1993848799 countsByYear W19938487992021 @default.
- W1993848799 countsByYear W19938487992022 @default.
- W1993848799 countsByYear W19938487992023 @default.
- W1993848799 crossrefType "journal-article" @default.
- W1993848799 hasAuthorship W1993848799A5061166145 @default.
- W1993848799 hasAuthorship W1993848799A5062657762 @default.
- W1993848799 hasConcept C105795698 @default.
- W1993848799 hasConcept C107673813 @default.
- W1993848799 hasConcept C11413529 @default.
- W1993848799 hasConcept C134306372 @default.
- W1993848799 hasConcept C143724316 @default.
- W1993848799 hasConcept C151406439 @default.
- W1993848799 hasConcept C151730666 @default.
- W1993848799 hasConcept C153180895 @default.
- W1993848799 hasConcept C154945302 @default.
- W1993848799 hasConcept C159877910 @default.
- W1993848799 hasConcept C169214877 @default.
- W1993848799 hasConcept C177148314 @default.
- W1993848799 hasConcept C177769412 @default.
- W1993848799 hasConcept C182310444 @default.
- W1993848799 hasConcept C194657046 @default.
- W1993848799 hasConcept C24338571 @default.
- W1993848799 hasConcept C2781280628 @default.
- W1993848799 hasConcept C28826006 @default.
- W1993848799 hasConcept C30795276 @default.
- W1993848799 hasConcept C33923547 @default.
- W1993848799 hasConcept C41008148 @default.
- W1993848799 hasConcept C61224824 @default.
- W1993848799 hasConcept C73555534 @default.
- W1993848799 hasConcept C79337645 @default.
- W1993848799 hasConcept C86803240 @default.
- W1993848799 hasConceptScore W1993848799C105795698 @default.
- W1993848799 hasConceptScore W1993848799C107673813 @default.
- W1993848799 hasConceptScore W1993848799C11413529 @default.
- W1993848799 hasConceptScore W1993848799C134306372 @default.
- W1993848799 hasConceptScore W1993848799C143724316 @default.
- W1993848799 hasConceptScore W1993848799C151406439 @default.
- W1993848799 hasConceptScore W1993848799C151730666 @default.
- W1993848799 hasConceptScore W1993848799C153180895 @default.
- W1993848799 hasConceptScore W1993848799C154945302 @default.
- W1993848799 hasConceptScore W1993848799C159877910 @default.
- W1993848799 hasConceptScore W1993848799C169214877 @default.
- W1993848799 hasConceptScore W1993848799C177148314 @default.
- W1993848799 hasConceptScore W1993848799C177769412 @default.
- W1993848799 hasConceptScore W1993848799C182310444 @default.
- W1993848799 hasConceptScore W1993848799C194657046 @default.
- W1993848799 hasConceptScore W1993848799C24338571 @default.
- W1993848799 hasConceptScore W1993848799C2781280628 @default.
- W1993848799 hasConceptScore W1993848799C28826006 @default.
- W1993848799 hasConceptScore W1993848799C30795276 @default.
- W1993848799 hasConceptScore W1993848799C33923547 @default.