Matches in SemOpenAlex for { <https://semopenalex.org/work/W1993864477> ?p ?o ?g. }
- W1993864477 endingPage "135" @default.
- W1993864477 startingPage "111" @default.
- W1993864477 abstract "The density of the core is about 8 percent smaller than that of pure iron under similar P, T conditions, implying the presence of a substantial amount of light element(s). Sulphur is popularly considered to be the principal light element in the core. If so, the earth accreted about 44 percent of the primordial complement of this element. To accrete sulphur as efficiently as this, and at the same time, to account for the observed depletions by much larger factors of Na, K, Mn, Rb, F, Cs, Zn and Cl, the earth must have accreted in an environment where hydrogen was depleted relative to sulphur by a factor of about 100, compared to the solar nebula. The conditions required are restrictive and encourage evaluation of other light elements as possible components of the core, for example, oxygen. Experimental observations show that the solubility of FeO in liquid iron increases rapidly between 1, 500 and 2, 000°C. Thermodynamic extrapolation of solubility data implies solubility of 40mol.% FeO at 3, 000°C and complete miscibility of liquid Fe and FeO above 3, 500°C. Calculations show that solubility is greatly increased by high pressures and that at 2, 500°C, the liquid metal phase in equilibrium with the probable mineral assemblage in the lower mantle (FeO/(FeO + MgO) = 0.12) would contain more than 50mol.% FeO at a pressure of 300kb, and would be about 10 percent less dense than pure iron. These results imply that FeO is probably a major constituent of the earth's core. Solubility of FeO in metal may be accompanied by a large increase in oxygen fugacity of the core-mantle system relative to the situation where solution of FeO in molten iron does not occur. This effect is enhanced by the pressure-induced partial disproportionation of Fe2+ into Fe3+ + Fe0 in the lower mantle. Accordingly, the distribution of siderophile elements between mantle and core and the occurrence of oxidized species such as H2O, CO2 and Fe3+ in the mantle could result from attainment of local chemical equilibrium at high pressures between (Fe-FeO) metal and silicate phases in the more oxidizing environment prevailing during core segregation. Models of greater complexity, involving heterogeneous accretion of the earth and chemical disequilibrium between metal and silicate phases may not be necessary. Thus, if FeO indeed enters the core as suggested, rather simple models whereby the earth formed by homogeneous accretion from a mixture consisting of 10% of low-temp. oxidized primordial condensate similar to C1 chondrites (20% H2O) and 90% of devolatilized, reduced material (mainly metallic iron and magnesium silicates) can provide a satisfactory explanation of the earth's bulk composition." @default.
- W1993864477 created "2016-06-24" @default.
- W1993864477 creator A5045652400 @default.
- W1993864477 date "1977-01-01" @default.
- W1993864477 modified "2023-10-01" @default.
- W1993864477 title "Composition of the core and implications for origin of the earth." @default.
- W1993864477 cites W11846100 @default.
- W1993864477 cites W1506090423 @default.
- W1993864477 cites W1510533235 @default.
- W1993864477 cites W1531649113 @default.
- W1993864477 cites W1549664538 @default.
- W1993864477 cites W1593503301 @default.
- W1993864477 cites W1595923163 @default.
- W1993864477 cites W1597830049 @default.
- W1993864477 cites W1640974333 @default.
- W1993864477 cites W1641455643 @default.
- W1993864477 cites W1653787692 @default.
- W1993864477 cites W1676800296 @default.
- W1993864477 cites W1858882401 @default.
- W1993864477 cites W1970051611 @default.
- W1993864477 cites W1971199575 @default.
- W1993864477 cites W1972556634 @default.
- W1993864477 cites W1972755959 @default.
- W1993864477 cites W1975337371 @default.
- W1993864477 cites W1976047520 @default.
- W1993864477 cites W1982102230 @default.
- W1993864477 cites W1982161227 @default.
- W1993864477 cites W1982782567 @default.
- W1993864477 cites W1987365589 @default.
- W1993864477 cites W1989565304 @default.
- W1993864477 cites W2000672355 @default.
- W1993864477 cites W2002899800 @default.
- W1993864477 cites W2010955034 @default.
- W1993864477 cites W2011325096 @default.
- W1993864477 cites W2012909499 @default.
- W1993864477 cites W2014416110 @default.
- W1993864477 cites W2020323135 @default.
- W1993864477 cites W2020489995 @default.
- W1993864477 cites W2020773858 @default.
- W1993864477 cites W2028130517 @default.
- W1993864477 cites W2028889762 @default.
- W1993864477 cites W2030706802 @default.
- W1993864477 cites W2033215585 @default.
- W1993864477 cites W2034926442 @default.
- W1993864477 cites W2036773053 @default.
- W1993864477 cites W2037072409 @default.
- W1993864477 cites W2040292903 @default.
- W1993864477 cites W2040447742 @default.
- W1993864477 cites W2040504951 @default.
- W1993864477 cites W2044749924 @default.
- W1993864477 cites W2048941742 @default.
- W1993864477 cites W2049195877 @default.
- W1993864477 cites W2054610667 @default.
- W1993864477 cites W2054813642 @default.
- W1993864477 cites W2055055397 @default.
- W1993864477 cites W2055191312 @default.
- W1993864477 cites W2060985840 @default.
- W1993864477 cites W2061082423 @default.
- W1993864477 cites W2065123560 @default.
- W1993864477 cites W2068860856 @default.
- W1993864477 cites W2072792809 @default.
- W1993864477 cites W2074260509 @default.
- W1993864477 cites W2076499646 @default.
- W1993864477 cites W2077886905 @default.
- W1993864477 cites W2077960390 @default.
- W1993864477 cites W2078878455 @default.
- W1993864477 cites W2079274419 @default.
- W1993864477 cites W2083642710 @default.
- W1993864477 cites W2086700452 @default.
- W1993864477 cites W2087983709 @default.
- W1993864477 cites W2092322173 @default.
- W1993864477 cites W2102530828 @default.
- W1993864477 cites W2110645532 @default.
- W1993864477 cites W2111626371 @default.
- W1993864477 cites W2136433737 @default.
- W1993864477 cites W2139478181 @default.
- W1993864477 cites W2143836610 @default.
- W1993864477 cites W2153634211 @default.
- W1993864477 cites W2155562040 @default.
- W1993864477 cites W2164242582 @default.
- W1993864477 cites W2165099494 @default.
- W1993864477 cites W2167214643 @default.
- W1993864477 cites W2167858740 @default.
- W1993864477 cites W2215327617 @default.
- W1993864477 cites W2254539765 @default.
- W1993864477 cites W2587176296 @default.
- W1993864477 cites W2772841173 @default.
- W1993864477 cites W2914956895 @default.
- W1993864477 cites W3210738910 @default.
- W1993864477 doi "https://doi.org/10.2343/geochemj.11.111" @default.
- W1993864477 hasPublicationYear "1977" @default.
- W1993864477 type Work @default.
- W1993864477 sameAs 1993864477 @default.
- W1993864477 citedByCount "247" @default.
- W1993864477 countsByYear W19938644772012 @default.
- W1993864477 countsByYear W19938644772013 @default.
- W1993864477 countsByYear W19938644772014 @default.
- W1993864477 countsByYear W19938644772015 @default.