Matches in SemOpenAlex for { <https://semopenalex.org/work/W1993923171> ?p ?o ?g. }
- W1993923171 endingPage "1290" @default.
- W1993923171 startingPage "1279" @default.
- W1993923171 abstract "The total (elastic plus inelastic) cross sections for positron scattering from all the rare gases are reported at intermediate and high energies (20--1000 eV), where experimental data are available for comparison except for the case of radon gas. A complex-optical-potential [${mathit{V}}_{mathrm{opt}}$(r)] approach is employed in which the real part (static plus polarization terms) is calculated from Hartree-Fock or Dirac-Hartree-Fock target wave functions. The imaginary part of the optical potential, i.e., the absorption potential [${mathit{V}}_{mathrm{abs}}^{+}$(r)], is derived for each gas semiempirically from the corresponding electron absorption potential [${mathit{V}}_{mathrm{abs}}^{mathrm{ensuremath{-}}}$(r)] in the form of ${mathit{V}}_{mathrm{abs}}^{+}$(r)=f(k,r)${mathit{V}}_{mathrm{abs}}^{mathrm{ensuremath{-}}}$(r), where f(k,r) depends on the incident energy (${mathit{k}}^{2}$) and radial distance (r). The ${mathit{V}}_{mathrm{abs}}^{mathrm{ensuremath{-}}}$ is taken from the work of Truhlar and co-workers. The ${mathit{V}}_{mathrm{opt}}$(r) is treated exactly in a partial-wave analysis under the variable-phase method. With the present form of ${mathit{V}}_{mathrm{opt}}$(r), we are able to reproduce experimental ${mathrm{ensuremath{sigma}}}_{mathit{t}}$ values at all energies considered here. An additional feature of the present results is that the inelastic cross sections compare very well with the measured inelastic (sum of positronium formation, excitation, and ionization cross sections) values for rare gases, where such experimental data are available. The ${mathrm{ensuremath{sigma}}}_{mathit{t}}$ for the positron-Rn system are predicted.We also discuss the correlation between scattering cross section and the atomic properties. We found that at intermediate and high energies, the positron-gas total cross section can be represented by an analytic formula ${mathrm{ensuremath{sigma}}}_{mathit{t}}$(${10}^{mathrm{ensuremath{-}}16}$ ${mathrm{cm}}^{2}$)=21.16 ensuremath{surd}${mathrm{ensuremath{alpha}}}_{0}$(${mathit{a}}_{0}^{3}$)/E(eV) , where ${mathrm{ensuremath{alpha}}}_{0}$ is the target polarizability and E is the impact energy. This simple form of the ${mathrm{ensuremath{sigma}}}_{mathit{t}}$ in terms of target polarizability works very well for highly polarizable targets such as the alkali-metal atoms and several hydrocarbon molecules. In particular, by using the above analytic formula for ${mathrm{ensuremath{sigma}}}_{mathit{t}}$, we have shown that our results for Na, K, Rb, ${mathrm{C}}_{2}$${mathrm{H}}_{4}$, ${mathrm{C}}_{2}$${mathrm{H}}_{6}$, and ${mathrm{C}}_{3}$${mathrm{H}}_{6}$ targets compare very well with the experimental data." @default.
- W1993923171 created "2016-06-24" @default.
- W1993923171 creator A5001581760 @default.
- W1993923171 creator A5067725246 @default.
- W1993923171 date "1992-08-01" @default.
- W1993923171 modified "2023-09-27" @default.
- W1993923171 title "Positron scattering from rare gases (He, Ne, Ar, Kr, Xe, and Rn): Total cross sections at intermediate and high energies" @default.
- W1993923171 cites W1450381943 @default.
- W1993923171 cites W161614073 @default.
- W1993923171 cites W1636778977 @default.
- W1993923171 cites W1660473231 @default.
- W1993923171 cites W1669354183 @default.
- W1993923171 cites W1799411391 @default.
- W1993923171 cites W1879190162 @default.
- W1993923171 cites W1963643885 @default.
- W1993923171 cites W1966030860 @default.
- W1993923171 cites W1967516432 @default.
- W1993923171 cites W1972081687 @default.
- W1993923171 cites W1972093143 @default.
- W1993923171 cites W1973562162 @default.
- W1993923171 cites W1974267738 @default.
- W1993923171 cites W1978877677 @default.
- W1993923171 cites W1979094417 @default.
- W1993923171 cites W1979983521 @default.
- W1993923171 cites W1982509717 @default.
- W1993923171 cites W1983652764 @default.
- W1993923171 cites W1984363821 @default.
- W1993923171 cites W1985443529 @default.
- W1993923171 cites W1988251900 @default.
- W1993923171 cites W1988773668 @default.
- W1993923171 cites W1994930116 @default.
- W1993923171 cites W1996113038 @default.
- W1993923171 cites W1998571670 @default.
- W1993923171 cites W2001836196 @default.
- W1993923171 cites W2008741150 @default.
- W1993923171 cites W2016874512 @default.
- W1993923171 cites W2017770536 @default.
- W1993923171 cites W2019265571 @default.
- W1993923171 cites W2019543422 @default.
- W1993923171 cites W2021800423 @default.
- W1993923171 cites W2023107142 @default.
- W1993923171 cites W2027177498 @default.
- W1993923171 cites W2027514849 @default.
- W1993923171 cites W2028908140 @default.
- W1993923171 cites W2028914984 @default.
- W1993923171 cites W2030470412 @default.
- W1993923171 cites W2032955633 @default.
- W1993923171 cites W2033400396 @default.
- W1993923171 cites W2033822157 @default.
- W1993923171 cites W2035719175 @default.
- W1993923171 cites W2037581782 @default.
- W1993923171 cites W2040527456 @default.
- W1993923171 cites W2041154903 @default.
- W1993923171 cites W2043736223 @default.
- W1993923171 cites W2044369692 @default.
- W1993923171 cites W2049853913 @default.
- W1993923171 cites W2057190963 @default.
- W1993923171 cites W2057569447 @default.
- W1993923171 cites W2058033288 @default.
- W1993923171 cites W2059220978 @default.
- W1993923171 cites W2064066617 @default.
- W1993923171 cites W2069329746 @default.
- W1993923171 cites W2072651956 @default.
- W1993923171 cites W2074168922 @default.
- W1993923171 cites W2074513656 @default.
- W1993923171 cites W2075107514 @default.
- W1993923171 cites W2075741304 @default.
- W1993923171 cites W2077304717 @default.
- W1993923171 cites W2078929300 @default.
- W1993923171 cites W2082481039 @default.
- W1993923171 cites W2084489618 @default.
- W1993923171 cites W2085146644 @default.
- W1993923171 cites W2095880828 @default.
- W1993923171 cites W2111638615 @default.
- W1993923171 cites W2116733183 @default.
- W1993923171 cites W2167414530 @default.
- W1993923171 cites W2436926812 @default.
- W1993923171 cites W4247681044 @default.
- W1993923171 cites W68530639 @default.
- W1993923171 doi "https://doi.org/10.1103/physreva.46.1279" @default.
- W1993923171 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9908246" @default.
- W1993923171 hasPublicationYear "1992" @default.
- W1993923171 type Work @default.
- W1993923171 sameAs 1993923171 @default.
- W1993923171 citedByCount "36" @default.
- W1993923171 countsByYear W19939231712012 @default.
- W1993923171 countsByYear W19939231712013 @default.
- W1993923171 countsByYear W19939231712014 @default.
- W1993923171 countsByYear W19939231712015 @default.
- W1993923171 countsByYear W19939231712016 @default.
- W1993923171 countsByYear W19939231712017 @default.
- W1993923171 countsByYear W19939231712018 @default.
- W1993923171 countsByYear W19939231712019 @default.
- W1993923171 countsByYear W19939231712021 @default.
- W1993923171 countsByYear W19939231712022 @default.
- W1993923171 crossrefType "journal-article" @default.
- W1993923171 hasAuthorship W1993923171A5001581760 @default.
- W1993923171 hasAuthorship W1993923171A5067725246 @default.