Matches in SemOpenAlex for { <https://semopenalex.org/work/W1993939498> ?p ?o ?g. }
- W1993939498 endingPage "567" @default.
- W1993939498 startingPage "556" @default.
- W1993939498 abstract "This article presents a new algorithm for forecasting demand for perishable farm products, based on the support vector machine (SVM) method. Since SVMs have greater generalisation performance and guarantee global minima for given training data, it is believed that support vector regression will perform well for forecasting demand for perishable farm products. In order to improve forecasting precision (FP), this article quantifies the factors affecting the sales forecast of perishable farm products based on the fuzzy theory, which is suitable for real situations. Numerical experiments show that forecasting systems with SVMs and fuzzy theory outperform the radial basis function neural network, based on the criteria of day absolute error, relative mean error and FP. Since there is no structured way to choose the free parameters of SVMs, the variational range of free parameters and the effects of the parameters on prediction performance are discussed in this article. Analysis of experimental results proves that it is advantageous to apply SVMs forecasting system in perishable farm products demand forecasting." @default.
- W1993939498 created "2016-06-24" @default.
- W1993939498 creator A5001457544 @default.
- W1993939498 creator A5010590737 @default.
- W1993939498 creator A5011914191 @default.
- W1993939498 creator A5019453716 @default.
- W1993939498 date "2013-03-01" @default.
- W1993939498 modified "2023-10-01" @default.
- W1993939498 title "Demand forecasting of perishable farm products using support vector machine" @default.
- W1993939498 cites W114114605 @default.
- W1993939498 cites W1551427921 @default.
- W1993939498 cites W1863252023 @default.
- W1993939498 cites W1965159052 @default.
- W1993939498 cites W1968274170 @default.
- W1993939498 cites W1980947121 @default.
- W1993939498 cites W1986078433 @default.
- W1993939498 cites W1987741571 @default.
- W1993939498 cites W1988518729 @default.
- W1993939498 cites W1991619403 @default.
- W1993939498 cites W2012079387 @default.
- W1993939498 cites W2015686833 @default.
- W1993939498 cites W2031138951 @default.
- W1993939498 cites W2036233984 @default.
- W1993939498 cites W2041868317 @default.
- W1993939498 cites W2044747815 @default.
- W1993939498 cites W2050527683 @default.
- W1993939498 cites W2055522016 @default.
- W1993939498 cites W2056401416 @default.
- W1993939498 cites W2061687923 @default.
- W1993939498 cites W2061924989 @default.
- W1993939498 cites W2077922822 @default.
- W1993939498 cites W2086472796 @default.
- W1993939498 cites W2087347434 @default.
- W1993939498 cites W2087560201 @default.
- W1993939498 cites W2092673937 @default.
- W1993939498 cites W2099680562 @default.
- W1993939498 cites W2101833118 @default.
- W1993939498 cites W2113238782 @default.
- W1993939498 cites W2119367522 @default.
- W1993939498 cites W2124208061 @default.
- W1993939498 cites W2132320458 @default.
- W1993939498 cites W2139212933 @default.
- W1993939498 cites W2148655237 @default.
- W1993939498 cites W2153155589 @default.
- W1993939498 cites W2160829192 @default.
- W1993939498 cites W2162174678 @default.
- W1993939498 cites W2162272859 @default.
- W1993939498 cites W2163828179 @default.
- W1993939498 cites W2321877696 @default.
- W1993939498 cites W2797320655 @default.
- W1993939498 cites W3123622325 @default.
- W1993939498 cites W4211007335 @default.
- W1993939498 cites W4230674625 @default.
- W1993939498 cites W4237171445 @default.
- W1993939498 cites W4251281949 @default.
- W1993939498 cites W4300491437 @default.
- W1993939498 cites W4302609338 @default.
- W1993939498 doi "https://doi.org/10.1080/00207721.2011.617888" @default.
- W1993939498 hasPublicationYear "2013" @default.
- W1993939498 type Work @default.
- W1993939498 sameAs 1993939498 @default.
- W1993939498 citedByCount "42" @default.
- W1993939498 countsByYear W19939394982013 @default.
- W1993939498 countsByYear W19939394982014 @default.
- W1993939498 countsByYear W19939394982015 @default.
- W1993939498 countsByYear W19939394982018 @default.
- W1993939498 countsByYear W19939394982019 @default.
- W1993939498 countsByYear W19939394982020 @default.
- W1993939498 countsByYear W19939394982021 @default.
- W1993939498 countsByYear W19939394982022 @default.
- W1993939498 countsByYear W19939394982023 @default.
- W1993939498 crossrefType "journal-article" @default.
- W1993939498 hasAuthorship W1993939498A5001457544 @default.
- W1993939498 hasAuthorship W1993939498A5010590737 @default.
- W1993939498 hasAuthorship W1993939498A5011914191 @default.
- W1993939498 hasAuthorship W1993939498A5019453716 @default.
- W1993939498 hasConcept C119857082 @default.
- W1993939498 hasConcept C12267149 @default.
- W1993939498 hasConcept C124101348 @default.
- W1993939498 hasConcept C126255220 @default.
- W1993939498 hasConcept C127413603 @default.
- W1993939498 hasConcept C134306372 @default.
- W1993939498 hasConcept C14036430 @default.
- W1993939498 hasConcept C146978453 @default.
- W1993939498 hasConcept C154945302 @default.
- W1993939498 hasConcept C186633575 @default.
- W1993939498 hasConcept C193809577 @default.
- W1993939498 hasConcept C204323151 @default.
- W1993939498 hasConcept C33923547 @default.
- W1993939498 hasConcept C41008148 @default.
- W1993939498 hasConcept C42475967 @default.
- W1993939498 hasConcept C50644808 @default.
- W1993939498 hasConcept C58166 @default.
- W1993939498 hasConcept C78458016 @default.
- W1993939498 hasConcept C86803240 @default.
- W1993939498 hasConceptScore W1993939498C119857082 @default.
- W1993939498 hasConceptScore W1993939498C12267149 @default.
- W1993939498 hasConceptScore W1993939498C124101348 @default.