Matches in SemOpenAlex for { <https://semopenalex.org/work/W1993991785> ?p ?o ?g. }
- W1993991785 endingPage "630" @default.
- W1993991785 startingPage "611" @default.
- W1993991785 abstract "Two recent trends in scenario making are the starting point of this study: the combination of qualitative and quantitative materials, and inclusion of many kinds of experts. We propose a new scenario technique Q2 that answers to these calls, and describe it step-by-step. Q2 scenarios consist of Delphi, cluster analysis of numerical material, qualitative content analysis of interviews, and a futures table. Most of the required tools and methods are well documented and commonly used, but their combination is original, particularly the explorative and disaggregative way both types of material are analysed and compressed into a futures table and further developed into scenarios. We demonstrate the methodology through a case: the growing Finnish transport sector that faces severe pressure to cut CO2 emissions. Finnish experts were asked about their views of the future up to 2050, using an interactive and user-friendly questionnaire, and interviews. An expertise matrix was formed in order to achieve a comprehensive coverage in terms of key expertise, education, organisation, age, and gender. By widening the concept of expertise, it is possible to get a large variety of viewpoints. The resulting scenarios reveal that reaching the CO2 targets will require a palette of technical, infrastructural, and behavioural changes." @default.
- W1993991785 created "2016-06-24" @default.
- W1993991785 creator A5051455867 @default.
- W1993991785 creator A5062291972 @default.
- W1993991785 date "2013-05-01" @default.
- W1993991785 modified "2023-10-02" @default.
- W1993991785 title "Combining the qualitative and quantitative with the Q2 scenario technique — The case of transport and climate" @default.
- W1993991785 cites W1545203065 @default.
- W1993991785 cites W1963504796 @default.
- W1993991785 cites W1963969144 @default.
- W1993991785 cites W1965057196 @default.
- W1993991785 cites W1966944008 @default.
- W1993991785 cites W1972427064 @default.
- W1993991785 cites W1978250169 @default.
- W1993991785 cites W1979297386 @default.
- W1993991785 cites W1989380530 @default.
- W1993991785 cites W1992747026 @default.
- W1993991785 cites W1993128282 @default.
- W1993991785 cites W1994733919 @default.
- W1993991785 cites W2002760855 @default.
- W1993991785 cites W2003213879 @default.
- W1993991785 cites W2008325044 @default.
- W1993991785 cites W2010055302 @default.
- W1993991785 cites W2012103520 @default.
- W1993991785 cites W2018058131 @default.
- W1993991785 cites W2026380563 @default.
- W1993991785 cites W2040729499 @default.
- W1993991785 cites W2045503958 @default.
- W1993991785 cites W2049816924 @default.
- W1993991785 cites W2050051351 @default.
- W1993991785 cites W2054746354 @default.
- W1993991785 cites W2058144422 @default.
- W1993991785 cites W2064893506 @default.
- W1993991785 cites W2071177730 @default.
- W1993991785 cites W2076678251 @default.
- W1993991785 cites W2077316691 @default.
- W1993991785 cites W2077847247 @default.
- W1993991785 cites W2080595970 @default.
- W1993991785 cites W2081095563 @default.
- W1993991785 cites W2081206009 @default.
- W1993991785 cites W2090207602 @default.
- W1993991785 cites W2102992776 @default.
- W1993991785 cites W2122328334 @default.
- W1993991785 cites W2126939001 @default.
- W1993991785 cites W2135100044 @default.
- W1993991785 cites W2140576040 @default.
- W1993991785 cites W2142225512 @default.
- W1993991785 cites W2572706653 @default.
- W1993991785 doi "https://doi.org/10.1016/j.techfore.2012.09.004" @default.
- W1993991785 hasPublicationYear "2013" @default.
- W1993991785 type Work @default.
- W1993991785 sameAs 1993991785 @default.
- W1993991785 citedByCount "86" @default.
- W1993991785 countsByYear W19939917852013 @default.
- W1993991785 countsByYear W19939917852014 @default.
- W1993991785 countsByYear W19939917852015 @default.
- W1993991785 countsByYear W19939917852016 @default.
- W1993991785 countsByYear W19939917852017 @default.
- W1993991785 countsByYear W19939917852018 @default.
- W1993991785 countsByYear W19939917852019 @default.
- W1993991785 countsByYear W19939917852020 @default.
- W1993991785 countsByYear W19939917852021 @default.
- W1993991785 countsByYear W19939917852022 @default.
- W1993991785 countsByYear W19939917852023 @default.
- W1993991785 crossrefType "journal-article" @default.
- W1993991785 hasAuthorship W1993991785A5051455867 @default.
- W1993991785 hasAuthorship W1993991785A5062291972 @default.
- W1993991785 hasConcept C10138342 @default.
- W1993991785 hasConcept C106306483 @default.
- W1993991785 hasConcept C111919701 @default.
- W1993991785 hasConcept C119857082 @default.
- W1993991785 hasConcept C124101348 @default.
- W1993991785 hasConcept C127413603 @default.
- W1993991785 hasConcept C136197465 @default.
- W1993991785 hasConcept C142362112 @default.
- W1993991785 hasConcept C144024400 @default.
- W1993991785 hasConcept C144133560 @default.
- W1993991785 hasConcept C153349607 @default.
- W1993991785 hasConcept C154945302 @default.
- W1993991785 hasConcept C18785705 @default.
- W1993991785 hasConcept C190248442 @default.
- W1993991785 hasConcept C195094911 @default.
- W1993991785 hasConcept C2522767166 @default.
- W1993991785 hasConcept C2524010 @default.
- W1993991785 hasConcept C2776035091 @default.
- W1993991785 hasConcept C2779495148 @default.
- W1993991785 hasConcept C28719098 @default.
- W1993991785 hasConcept C33923547 @default.
- W1993991785 hasConcept C36289849 @default.
- W1993991785 hasConcept C41008148 @default.
- W1993991785 hasConcept C45235069 @default.
- W1993991785 hasConcept C539667460 @default.
- W1993991785 hasConcept C56739046 @default.
- W1993991785 hasConcept C60641444 @default.
- W1993991785 hasConcept C64848388 @default.
- W1993991785 hasConcept C87156501 @default.
- W1993991785 hasConceptScore W1993991785C10138342 @default.
- W1993991785 hasConceptScore W1993991785C106306483 @default.