Matches in SemOpenAlex for { <https://semopenalex.org/work/W1994042308> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W1994042308 abstract "Improved vegetation maps are required for fire management and biodiversity assessment, from critical inputs for hydrological and biogeochemical models and represent a means for scaling-up point measurements. At scales greater than 10 meters, vegetation communities are typically mixed consisting of leaves, branches, exposed soil and shadows. To map mixed vegetation, many researchers employ spectral mixture analysis (SMA). In most SMA applications, a single set of spectra consisting of green vegetation, soil, non- photosynthetic vegetation and shade are used to 'unmix' images. However, because most scenes contain more than four components, this simple approach leads to fraction errors and may fail to differentiate many vegetation types. In this work, we apply a new approach called multiple endmember spectral mixture analysis, in which the number and types of endmembers vary per-pixel. Using this approach, hundreds of unique models are generated that account for community specific differences in plant chemistry, physical attributes and phenology. Additionally, we describe a new strategy for developing and organizing regionally specific spectral libraries. We present result from a study in the Santa Monica Mountains using AVIRIS data, in which we map grassland and chaparral communities, mapping species dominance in some cases to a high degree of accuracy." @default.
- W1994042308 created "2016-06-24" @default.
- W1994042308 creator A5016773668 @default.
- W1994042308 creator A5018065949 @default.
- W1994042308 creator A5024700443 @default.
- W1994042308 creator A5032967000 @default.
- W1994042308 creator A5039853039 @default.
- W1994042308 date "1997-10-31" @default.
- W1994042308 modified "2023-09-28" @default.
- W1994042308 title "<title>Optimum strategies for mapping vegetation using multiple-endmember spectral mixture models</title>" @default.
- W1994042308 cites W2112538038 @default.
- W1994042308 doi "https://doi.org/10.1117/12.278930" @default.
- W1994042308 hasPublicationYear "1997" @default.
- W1994042308 type Work @default.
- W1994042308 sameAs 1994042308 @default.
- W1994042308 citedByCount "19" @default.
- W1994042308 countsByYear W19940423082013 @default.
- W1994042308 countsByYear W19940423082014 @default.
- W1994042308 countsByYear W19940423082015 @default.
- W1994042308 countsByYear W19940423082016 @default.
- W1994042308 countsByYear W19940423082017 @default.
- W1994042308 countsByYear W19940423082022 @default.
- W1994042308 countsByYear W19940423082023 @default.
- W1994042308 crossrefType "proceedings-article" @default.
- W1994042308 hasAuthorship W1994042308A5016773668 @default.
- W1994042308 hasAuthorship W1994042308A5018065949 @default.
- W1994042308 hasAuthorship W1994042308A5024700443 @default.
- W1994042308 hasAuthorship W1994042308A5032967000 @default.
- W1994042308 hasAuthorship W1994042308A5039853039 @default.
- W1994042308 hasConcept C142724271 @default.
- W1994042308 hasConcept C154945302 @default.
- W1994042308 hasConcept C159078339 @default.
- W1994042308 hasConcept C160633673 @default.
- W1994042308 hasConcept C205649164 @default.
- W1994042308 hasConcept C2776054349 @default.
- W1994042308 hasConcept C2776133958 @default.
- W1994042308 hasConcept C39432304 @default.
- W1994042308 hasConcept C41008148 @default.
- W1994042308 hasConcept C58237817 @default.
- W1994042308 hasConcept C62649853 @default.
- W1994042308 hasConcept C71924100 @default.
- W1994042308 hasConceptScore W1994042308C142724271 @default.
- W1994042308 hasConceptScore W1994042308C154945302 @default.
- W1994042308 hasConceptScore W1994042308C159078339 @default.
- W1994042308 hasConceptScore W1994042308C160633673 @default.
- W1994042308 hasConceptScore W1994042308C205649164 @default.
- W1994042308 hasConceptScore W1994042308C2776054349 @default.
- W1994042308 hasConceptScore W1994042308C2776133958 @default.
- W1994042308 hasConceptScore W1994042308C39432304 @default.
- W1994042308 hasConceptScore W1994042308C41008148 @default.
- W1994042308 hasConceptScore W1994042308C58237817 @default.
- W1994042308 hasConceptScore W1994042308C62649853 @default.
- W1994042308 hasConceptScore W1994042308C71924100 @default.
- W1994042308 hasLocation W19940423081 @default.
- W1994042308 hasOpenAccess W1994042308 @default.
- W1994042308 hasPrimaryLocation W19940423081 @default.
- W1994042308 hasRelatedWork W2051769241 @default.
- W1994042308 hasRelatedWork W2094596373 @default.
- W1994042308 hasRelatedWork W2147723763 @default.
- W1994042308 hasRelatedWork W2353831177 @default.
- W1994042308 hasRelatedWork W2355447943 @default.
- W1994042308 hasRelatedWork W2364107869 @default.
- W1994042308 hasRelatedWork W2766233656 @default.
- W1994042308 hasRelatedWork W3036216071 @default.
- W1994042308 hasRelatedWork W2169663233 @default.
- W1994042308 hasRelatedWork W641190407 @default.
- W1994042308 isParatext "false" @default.
- W1994042308 isRetracted "false" @default.
- W1994042308 magId "1994042308" @default.
- W1994042308 workType "article" @default.