Matches in SemOpenAlex for { <https://semopenalex.org/work/W1994103660> ?p ?o ?g. }
- W1994103660 endingPage "1294" @default.
- W1994103660 startingPage "1285" @default.
- W1994103660 abstract "Summary The model based on Gaussian process (GP) prior and a kernel covariance function can be used to fit nonlinear data with multidimensional covariates. It has been used as a flexible nonparametric approach for curve fitting, classification, clustering, and other statistical problems, and has been widely applied to deal with complex nonlinear systems in many different areas particularly in machine learning. However, it is a challenging problem when the model is used for the large-scale data sets and high-dimensional data, for example, for the meat data discussed in this article that have 100 highly correlated covariates. For such data, it suffers from large variance of parameter estimation and high predictive errors, and numerically, it suffers from unstable computation. In this article, penalized likelihood framework will be applied to the model based on GPs. Different penalties will be investigated, and their ability in application given to suit the characteristics of GP models will be discussed. The asymptotic properties will also be discussed with the relevant proofs. Several applications to real biomechanical and bioinformatics data sets will be reported." @default.
- W1994103660 created "2016-06-24" @default.
- W1994103660 creator A5015190140 @default.
- W1994103660 creator A5021058011 @default.
- W1994103660 creator A5068961172 @default.
- W1994103660 date "2011-03-08" @default.
- W1994103660 modified "2023-09-23" @default.
- W1994103660 title "Penalized Gaussian Process Regression and Classification for High-Dimensional Nonlinear Data" @default.
- W1994103660 cites W1480376833 @default.
- W1994103660 cites W1528177290 @default.
- W1994103660 cites W1567512734 @default.
- W1994103660 cites W1599057079 @default.
- W1994103660 cites W1968263491 @default.
- W1994103660 cites W1968694834 @default.
- W1994103660 cites W1982652137 @default.
- W1994103660 cites W1983957710 @default.
- W1994103660 cites W1989520638 @default.
- W1994103660 cites W2019966295 @default.
- W1994103660 cites W2020925091 @default.
- W1994103660 cites W2033585005 @default.
- W1994103660 cites W2034925981 @default.
- W1994103660 cites W2069297020 @default.
- W1994103660 cites W2074682976 @default.
- W1994103660 cites W2082640612 @default.
- W1994103660 cites W2106398669 @default.
- W1994103660 cites W2109363337 @default.
- W1994103660 cites W2133255100 @default.
- W1994103660 cites W2138019504 @default.
- W1994103660 cites W2142108383 @default.
- W1994103660 cites W2146260999 @default.
- W1994103660 cites W2149690195 @default.
- W1994103660 cites W2158940042 @default.
- W1994103660 cites W3098799846 @default.
- W1994103660 doi "https://doi.org/10.1111/j.1541-0420.2011.01576.x" @default.
- W1994103660 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21385168" @default.
- W1994103660 hasPublicationYear "2011" @default.
- W1994103660 type Work @default.
- W1994103660 sameAs 1994103660 @default.
- W1994103660 citedByCount "29" @default.
- W1994103660 countsByYear W19941036602012 @default.
- W1994103660 countsByYear W19941036602013 @default.
- W1994103660 countsByYear W19941036602014 @default.
- W1994103660 countsByYear W19941036602016 @default.
- W1994103660 countsByYear W19941036602017 @default.
- W1994103660 countsByYear W19941036602019 @default.
- W1994103660 countsByYear W19941036602020 @default.
- W1994103660 countsByYear W19941036602021 @default.
- W1994103660 countsByYear W19941036602022 @default.
- W1994103660 countsByYear W19941036602023 @default.
- W1994103660 crossrefType "journal-article" @default.
- W1994103660 hasAuthorship W1994103660A5015190140 @default.
- W1994103660 hasAuthorship W1994103660A5021058011 @default.
- W1994103660 hasAuthorship W1994103660A5068961172 @default.
- W1994103660 hasConcept C102366305 @default.
- W1994103660 hasConcept C105795698 @default.
- W1994103660 hasConcept C11413529 @default.
- W1994103660 hasConcept C114614502 @default.
- W1994103660 hasConcept C119043178 @default.
- W1994103660 hasConcept C119857082 @default.
- W1994103660 hasConcept C121332964 @default.
- W1994103660 hasConcept C124101348 @default.
- W1994103660 hasConcept C158622935 @default.
- W1994103660 hasConcept C163716315 @default.
- W1994103660 hasConcept C178650346 @default.
- W1994103660 hasConcept C33923547 @default.
- W1994103660 hasConcept C41008148 @default.
- W1994103660 hasConcept C61326573 @default.
- W1994103660 hasConcept C62520636 @default.
- W1994103660 hasConcept C73555534 @default.
- W1994103660 hasConcept C74193536 @default.
- W1994103660 hasConceptScore W1994103660C102366305 @default.
- W1994103660 hasConceptScore W1994103660C105795698 @default.
- W1994103660 hasConceptScore W1994103660C11413529 @default.
- W1994103660 hasConceptScore W1994103660C114614502 @default.
- W1994103660 hasConceptScore W1994103660C119043178 @default.
- W1994103660 hasConceptScore W1994103660C119857082 @default.
- W1994103660 hasConceptScore W1994103660C121332964 @default.
- W1994103660 hasConceptScore W1994103660C124101348 @default.
- W1994103660 hasConceptScore W1994103660C158622935 @default.
- W1994103660 hasConceptScore W1994103660C163716315 @default.
- W1994103660 hasConceptScore W1994103660C178650346 @default.
- W1994103660 hasConceptScore W1994103660C33923547 @default.
- W1994103660 hasConceptScore W1994103660C41008148 @default.
- W1994103660 hasConceptScore W1994103660C61326573 @default.
- W1994103660 hasConceptScore W1994103660C62520636 @default.
- W1994103660 hasConceptScore W1994103660C73555534 @default.
- W1994103660 hasConceptScore W1994103660C74193536 @default.
- W1994103660 hasIssue "4" @default.
- W1994103660 hasLocation W19941036601 @default.
- W1994103660 hasLocation W19941036602 @default.
- W1994103660 hasOpenAccess W1994103660 @default.
- W1994103660 hasPrimaryLocation W19941036601 @default.
- W1994103660 hasRelatedWork W1510052597 @default.
- W1994103660 hasRelatedWork W1567512734 @default.
- W1994103660 hasRelatedWork W1582606351 @default.
- W1994103660 hasRelatedWork W1599057079 @default.
- W1994103660 hasRelatedWork W1746819321 @default.
- W1994103660 hasRelatedWork W2018044188 @default.