Matches in SemOpenAlex for { <https://semopenalex.org/work/W1994127966> ?p ?o ?g. }
- W1994127966 endingPage "3824" @default.
- W1994127966 startingPage "3814" @default.
- W1994127966 abstract "One of the limitations of the current computer‐aided detection (CAD) of polyps in CT colonography (CTC) is a relatively large number of false‐positive (FP) detections. Rectal tubes (RTs) are one of the typical sources of FPs because a portion of a RT, especially a portion of a bulbous tip, often exhibits a cap‐like shape that closely mimics the appearance of a small polyp. Radiologists can easily recognize and dismiss RT‐induced FPs; thus, they may lose their confidence in CAD as an effective tool if the CAD scheme generates such “obvious” FPs due to RTs consistently. In addition, RT‐induced FPs may distract radiologists from less common true positives in the rectum. Therefore, removal RT‐induced FPs as well as other types of FPs is desirable while maintaining a high sensitivity in the detection of polyps. We developed a three‐dimensional (3D) massive‐training artificial neural network (MTANN) for distinction between polyps and RTs in 3D CTC volumetric data. The 3D MTANN is a supervised volume‐processing technique which is trained with input CTC volumes and the corresponding “teaching” volumes. The teaching volume for a polyp contains a 3D Gaussian distribution, and that for a RT contains zeros for enhancement of polyps and suppression of RTs, respectively. For distinction between polyps and nonpolyps including RTs, a 3D scoring method based on a 3D Gaussian weighting function is applied to the output of the trained 3D MTANN. Our database consisted of CTC examinations of 73 patients, scanned in both supine and prone positions (146 CTC data sets in total), with optical colonoscopy as a reference standard for the presence of polyps. Fifteen patients had 28 polyps, 15 of which were and 13 were in size. These CTC cases were subjected to our previously reported CAD scheme that included centerline‐based segmentation of the colon, shape‐based detection of polyps, and reduction of FPs by use of a Bayesian neural network based on geometric and texture features. Application of this CAD scheme yielded 96.4% by‐polyp sensitivity with 3.1 FPs per patient, among which 20 FPs were caused by RTs. To eliminate the FPs due to RTs and possibly other normal structures, we trained a 3D MTANN with ten representative polyps and ten RTs, and applied the trained 3D MTANN to the above CAD true‐ and false‐positive detections. In the output volumes of the 3D MTANN, polyps were represented by distributions of bright voxels, whereas RTs and other normal structures partly similar to RTs appeared as darker voxels, indicating the ability of the 3D MTANN to suppress RTs as well as other normal structures effectively. Application of the 3D MTANN to the CAD detections showed that the 3D MTANN eliminated all RT‐induced 20 FPs, as well as 53 FPs due to other causes, without removal of any true positives. Overall, the 3D MTANN was able to reduce the FP rate of the CAD scheme from 3.1 to 2.1 FPs per patient (33% reduction), while the original by‐polyp sensitivity of 96.4% was maintained." @default.
- W1994127966 created "2016-06-24" @default.
- W1994127966 creator A5007340702 @default.
- W1994127966 creator A5019577667 @default.
- W1994127966 creator A5030721229 @default.
- W1994127966 creator A5050949810 @default.
- W1994127966 date "2006-09-25" @default.
- W1994127966 modified "2023-10-04" @default.
- W1994127966 title "Massive‐training artificial neural network (MTANN) for reduction of false positives in computer‐aided detection of polyps: Suppression of rectal tubes" @default.
- W1994127966 cites W1498436455 @default.
- W1994127966 cites W1546630874 @default.
- W1994127966 cites W1963582808 @default.
- W1994127966 cites W1965479476 @default.
- W1994127966 cites W1971735090 @default.
- W1994127966 cites W1981444270 @default.
- W1994127966 cites W1990923877 @default.
- W1994127966 cites W1993054379 @default.
- W1994127966 cites W2007678807 @default.
- W1994127966 cites W2012902066 @default.
- W1994127966 cites W2023522838 @default.
- W1994127966 cites W2024715873 @default.
- W1994127966 cites W2029692362 @default.
- W1994127966 cites W2032966204 @default.
- W1994127966 cites W2033158289 @default.
- W1994127966 cites W2035950812 @default.
- W1994127966 cites W2038839211 @default.
- W1994127966 cites W2069342642 @default.
- W1994127966 cites W2069401973 @default.
- W1994127966 cites W2072941425 @default.
- W1994127966 cites W2084656440 @default.
- W1994127966 cites W2095344271 @default.
- W1994127966 cites W2102150307 @default.
- W1994127966 cites W2102403324 @default.
- W1994127966 cites W2103311002 @default.
- W1994127966 cites W2107233998 @default.
- W1994127966 cites W2107339353 @default.
- W1994127966 cites W2110955233 @default.
- W1994127966 cites W2114973443 @default.
- W1994127966 cites W2116467811 @default.
- W1994127966 cites W2118291747 @default.
- W1994127966 cites W2127085684 @default.
- W1994127966 cites W2128392486 @default.
- W1994127966 cites W2132715022 @default.
- W1994127966 cites W2135917749 @default.
- W1994127966 cites W2137865578 @default.
- W1994127966 cites W2145255847 @default.
- W1994127966 cites W2146911148 @default.
- W1994127966 cites W2157469204 @default.
- W1994127966 cites W2159947534 @default.
- W1994127966 cites W2167438057 @default.
- W1994127966 cites W2167762696 @default.
- W1994127966 cites W81463918 @default.
- W1994127966 doi "https://doi.org/10.1118/1.2349839" @default.
- W1994127966 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17089846" @default.
- W1994127966 hasPublicationYear "2006" @default.
- W1994127966 type Work @default.
- W1994127966 sameAs 1994127966 @default.
- W1994127966 citedByCount "94" @default.
- W1994127966 countsByYear W19941279662012 @default.
- W1994127966 countsByYear W19941279662013 @default.
- W1994127966 countsByYear W19941279662014 @default.
- W1994127966 countsByYear W19941279662015 @default.
- W1994127966 countsByYear W19941279662016 @default.
- W1994127966 countsByYear W19941279662017 @default.
- W1994127966 countsByYear W19941279662018 @default.
- W1994127966 countsByYear W19941279662019 @default.
- W1994127966 countsByYear W19941279662020 @default.
- W1994127966 countsByYear W19941279662021 @default.
- W1994127966 countsByYear W19941279662022 @default.
- W1994127966 crossrefType "journal-article" @default.
- W1994127966 hasAuthorship W1994127966A5007340702 @default.
- W1994127966 hasAuthorship W1994127966A5019577667 @default.
- W1994127966 hasAuthorship W1994127966A5030721229 @default.
- W1994127966 hasAuthorship W1994127966A5050949810 @default.
- W1994127966 hasConcept C111335779 @default.
- W1994127966 hasConcept C121608353 @default.
- W1994127966 hasConcept C126322002 @default.
- W1994127966 hasConcept C126838900 @default.
- W1994127966 hasConcept C127413603 @default.
- W1994127966 hasConcept C153180895 @default.
- W1994127966 hasConcept C154945302 @default.
- W1994127966 hasConcept C183115368 @default.
- W1994127966 hasConcept C194789388 @default.
- W1994127966 hasConcept C199639397 @default.
- W1994127966 hasConcept C2524010 @default.
- W1994127966 hasConcept C2776759754 @default.
- W1994127966 hasConcept C2778435480 @default.
- W1994127966 hasConcept C2779549770 @default.
- W1994127966 hasConcept C31972630 @default.
- W1994127966 hasConcept C33923547 @default.
- W1994127966 hasConcept C41008148 @default.
- W1994127966 hasConcept C50644808 @default.
- W1994127966 hasConcept C526805850 @default.
- W1994127966 hasConcept C64869954 @default.
- W1994127966 hasConcept C71924100 @default.
- W1994127966 hasConceptScore W1994127966C111335779 @default.
- W1994127966 hasConceptScore W1994127966C121608353 @default.
- W1994127966 hasConceptScore W1994127966C126322002 @default.