Matches in SemOpenAlex for { <https://semopenalex.org/work/W1994131134> ?p ?o ?g. }
- W1994131134 endingPage "166" @default.
- W1994131134 startingPage "159" @default.
- W1994131134 abstract "We have investigated the ability of alkylphenols to act as substrates and/or inhibitors of phenol sulfotransferase enzymes in human platelet cytosolic fractions. Our results indicate: (i) straight chain alkylphenols do not interact with the monoamine-sulfating phenol sulfotransferase (SULT1A3); (ii) short chain 4-n-alkylphenols (C < 8) are substrates for the phenol-sulfating enzymes (SULT1A1/2), which exhibit two activity maxima against substrates with alkyl chain lengths of C1–2 and C4–5; (iii) long chain 4-n-substituted alkylphenols (C ≥ 8) are poor substrates and act as inhibitors of SULT1A1/2; (iv) human platelets contain two activities, of low and high affinity, capable of sulfating 17β-estradiol, and 4-n-nonylphenol is a partial mixed inhibitor of the low affinity form of this activity. We conclude that by acting either as substrates or inhibitors of SULT1A1/2, alkylphenols may influence the sulfation, and hence the excretion, of estrogens and other phenol sulfotransferase substrates in humans. We have investigated the ability of alkylphenols to act as substrates and/or inhibitors of phenol sulfotransferase enzymes in human platelet cytosolic fractions. Our results indicate: (i) straight chain alkylphenols do not interact with the monoamine-sulfating phenol sulfotransferase (SULT1A3); (ii) short chain 4-n-alkylphenols (C < 8) are substrates for the phenol-sulfating enzymes (SULT1A1/2), which exhibit two activity maxima against substrates with alkyl chain lengths of C1–2 and C4–5; (iii) long chain 4-n-substituted alkylphenols (C ≥ 8) are poor substrates and act as inhibitors of SULT1A1/2; (iv) human platelets contain two activities, of low and high affinity, capable of sulfating 17β-estradiol, and 4-n-nonylphenol is a partial mixed inhibitor of the low affinity form of this activity. We conclude that by acting either as substrates or inhibitors of SULT1A1/2, alkylphenols may influence the sulfation, and hence the excretion, of estrogens and other phenol sulfotransferase substrates in humans. adenosine 3′-phosphate 5′-phosphosulfate 2,6-dichloro-4-nitrophenol N-tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid Endocrine disrupters are exogenous substances in the environment which can influence endocrine function in humans and other animals (1US-EPAEndocrine Disrupter Screening and Testing Advisory Committee Draft Report. Society of the Plastics Industry, Inc., Washington, D.C.1998Google Scholar). A number of these chemicals have estrogenic activity and are thus termed “xenoestrogens.” Phytoestrogens are naturally occurring xenoestrogens produced by plants. Man-made xenoestrogens include the alkylphenols, nonylphenol and octylphenol, and bisphenol A; environmental exposure to these compounds has been reported to modify sexual development and reproductive function in amphibians (2Lutz I. Kloas W. Sci. Total Environ. 1999; 225: 49-57Crossref PubMed Scopus (135) Google Scholar, 3Kloas W. Lutz I. Einspanier R. Sci. Total Environ. 1999; 225: 59-68Crossref PubMed Scopus (288) Google Scholar), crustacea (4Ganmo A. Ekelund R. Magnusson K. Berggren M. Environ. Pollut. 1989; 59: 115-127Crossref PubMed Scopus (97) Google Scholar, 5Zou E. Fingerman M. Ecotoxicol. Environ. Safety. 1999; 42: 185-190Crossref PubMed Scopus (50) Google Scholar), and fish (6Sumpter J. Toxicol. Lett. 1998; 102/103: 337-342Crossref Scopus (236) Google Scholar). In mammals, evidence is less clear, but there is widespread public concern that they may exert similar effects on human reproductive health and be involved in the initiation of some hormone-dependent cancers (7Toppari J. Larsen J. Christiansen P. Giwercman A. Grandjean P. Guillette L. Jegou B. Jensen T. Jouannet P. Keiding N. Leffers H. McLaclan J. Meyer O. Muller J. Rajpert-DeMeyts E. Scheike T. Sharpe R. Sumpter J. Skakkebaek N. Environ. Health Perspect. 1996; 104 (Suppl. 4): 741-803PubMed Google Scholar, 8Miller W. Sharpe R. Endocr. Rel. Cancer. 1998; 5: 69-96Crossref Scopus (65) Google Scholar, 9Sharpe R. Atanassova N. McKinnell C. Parte P. Turner J. Fisher J. Kerr J. Groome N. Macpherson S. Millar M. Sanders P. Biol. Reprod. 1998; 59: 1084-1094Crossref PubMed Scopus (169) Google Scholar, 10Roy D. Palangat M. Chen C.-W. Thomas R. Colerangle J. Atkinson A. Yan Z.-J. J. Toxicol. Environ. Health. 1997; 50: 1-29Crossref PubMed Scopus (200) Google Scholar, 11Ashby J. Tinwell H. Lefevre P. Odum J. Paton S. Milward S. Tittensor S. Brooks A. Regul. Toxicol. Pharmacol. 1997; 26: 102-118Crossref PubMed Scopus (72) Google Scholar, 12Cunny H. Mayes B. Rosica K. Trutter J. Van Miller J. Regul. Toxicol. Pharmacol. 1997; 26: 172-178Crossref PubMed Scopus (77) Google Scholar, 13Odum J. Pyrah I. Foster R. Van Miller J. Joiner R. Ashby J. Regul. Toxicol. Pharmacol. 1999; 29: 184-195Crossref PubMed Scopus (41) Google Scholar, 14Nagel S. Vom Saal F. Welshons W. J. Steroid Biochem. Mol. Biol. 1999; 69: 343-357Crossref PubMed Scopus (64) Google Scholar).17β-Estradiol and alkylphenols share a common structural motif in the phenolic A ring of 17β-estradiol and the phenol moiety of alkylphenols (Fig. 1), and it has been suggested that alkylphenols may act as endocrine disrupters by mimicking the activity of 17β-estradiol at estrogen receptors. Indeed, in a variety of cells transfected with human estrogen receptors, alkylphenols have been shown to bind weakly and provoke modest estrogenic effects (15Routledge E. Sumpter J. J. Biol. Chem. 1997; 272: 3280-3288Abstract Full Text Full Text PDF PubMed Scopus (442) Google Scholar, 16Pennie W. Aldridge T. Brooks A. J. Endocrinol. 1998; 158: R11-R14Crossref PubMed Scopus (99) Google Scholar, 17Tabira Y. Nakai M. Asai D. Yakabe Y. Tahara Y. Shinoyokuma T. Noguchi M. Takatsuki M. Shimohigashi Y. Eur. J. Biochem. 1999; 262: 240-245Crossref PubMed Scopus (84) Google Scholar). Conversely, alkylphenols have been reported to promote estrogenic signaling by inhibiting androgen receptor activation in some tissues (18Sohoni P. Sumpter J. J. Endocrinol. 1998; 158: 327-339Crossref PubMed Scopus (722) Google Scholar, 19Tran D. Klotz D. Ladlie B. Ide C. McLachlan J. Arnold S. Biochem. Biophys. Res. Commun. 1996; 229: 518-523Crossref PubMed Scopus (41) Google Scholar). However, there is also evidence that alkylphenols can disrupt endocrine-mediated events by inhibiting enzymes involved in the metabolism of sex steroids. Thus exposure of rats to octylphenol during fetal or perinatal development has been shown to decrease the expression of P450 17α-hydroxylase/C17–20 lyase (20Majdic G. Sharpe R. O'Shaughnessy P. Saunders P. Endocrinology. 1996; 137: 1063-1070Crossref PubMed Scopus (135) Google Scholar, 21Saunders P. Majdic G. Parte P. Millar M. Fisher J. Turner K. Sharpe R. Adv. Exp. Med. Biol. 1997; 424: 99-110Crossref PubMed Scopus (56) Google Scholar), the enzyme system responsible for the transformation of C21 steroids into C19steroids. Hence, exposure to alkylphenols may disrupt the production of both androgens and estrogens at key times during development.By acting as structural mimetics, alkylphenols may also disrupt the elimination of steroids from the body. Estrogenic hormones are excreted from the body following metabolic conversion to biologically less active water-soluble metabolites via cytochrome P450-mediated hydroxylation, glucuronidation, O-methylation, or sulfation (22Zhu B. Conney A. Carcinogenesis. 1998; 19: 1-27Crossref PubMed Scopus (830) Google Scholar), and many of these pathways are also utilized for the metabolism of alkylphenols in fish and mammals (23Meldahl A. Nithipatikom K. Lech J. Xenobiotica. 1996; 26: 1167-1180Crossref PubMed Scopus (42) Google Scholar, 24Thibaut R. Debrauwer L. Rao D. Cravedi J. Xenobiotica. 1998; 28: 745-757Crossref PubMed Scopus (47) Google Scholar, 25Lee P. Marquardt M. Lech J. Toxicol. Lett. 1998; 99: 117-126Crossref PubMed Scopus (25) Google Scholar, 26Hosea N. Guengerich P. Arch. Biochem. Biophys. 1998; 353: 365-373Crossref PubMed Scopus (32) Google Scholar, 27Certa H. Fedtke N. Wiegand H.-J. Muller H. Bolt H. Arch. Toxicol. 1996; 71: 112-122Crossref PubMed Scopus (91) Google Scholar). Exposure of the invertebrate Daphnia magna to either nonylphenol polyethoxylate or nonylphenol has been shown to disrupt endocrine function by decreasing both the glucuronidation and sulfation of testosterone (28Baldwin W. Graham S. Shea D. LeBlanc G. Ecotoxicol. Environ. Safety. 1998; 39: 104-111Crossref PubMed Scopus (48) Google Scholar), but it was not demonstrated whether the alkylphenols were substrates for the D. magna testosterone sulfotransferase in this study.Sulfation has a major role in regulating the active concentrations of a variety of biologically important molecules, including steroids, catecholamines, and peptides, and it is also important in the detoxification of many xenobiotics (29Coughtrie M. Sharp S. Maxwell K. Innes N. Chem. Biol. Interact. 1998; 109: 3-27Crossref PubMed Scopus (187) Google Scholar, 30Falany C. FASEB J. 1997; 11: 206-216Crossref PubMed Scopus (517) Google Scholar). In humans, the balance of sulfation and desulfation plays an important role in modulating the activity and transport of steroid hormones: the “inactive” sulfated forms of many steroids, particularly estrone and dehydroepiandrosterone, are found in the circulation at concentrations 10–30-fold higher than the unconjugated steroids. Furthermore, sulfation appears to prolong the half-life of these compounds in the circulation. Hence steroid sulfates represent an important depot of potentially “active” steroids following desulfation by steroid sulfatases (31Pasqualini J. Gelly C. Nguyen B. Vella C. J. Steroid Biochem. 1989; 34: 155-163Crossref PubMed Scopus (235) Google Scholar, 32Ruder H. Loriaux L. Lipsett M. J. Clin. Invest. 1972; 51: 1022-1033Crossref Scopus (240) Google Scholar, 33Santner R. Feil P. Santen R. J. Clin. Endocrinol. Metab. 1984; 59: 29-33Crossref PubMed Scopus (400) Google Scholar). Hydrolysis of estrone sulfate by steroid sulfatase is the major source of plasma estrogens in men and postmenopausal women, and the activity of steroid sulfatase is elevated in breast tumors (33Santner R. Feil P. Santen R. J. Clin. Endocrinol. Metab. 1984; 59: 29-33Crossref PubMed Scopus (400) Google Scholar). In fact, there is a strong inverse correlation between the level of expression of steroid sulfatase within breast tumors and disease-free survival times (34Utsumi T. Yoshimura N. Takeuchi S. Ando J. Maruta M. Maeda K. Harada N. Cancer Res. 1999; 59: 377-381PubMed Google Scholar). In many breast tumors, estrogen sulfotransferase activity is much lower than in normal breast tissue, and loss of this “inactivating” pathway may explain why tumor cells are extremely sensitive to the mitogenic effects of estradiol and estrone sulfate (35Qian Y. Deng C. Song W.-C. J. Pharm. Exp. Ther. 1998; 286: 555-560PubMed Google Scholar, 36Le Bail J. Allen K. Nicolas J. Habrioux G. Anticancer Res. 1998; 18: 1683-1688PubMed Google Scholar).Sulfation reactions require PAPS1 as a sulfate donor and are catalyzed by members of the SULT family. These enzymes are widely expressed in human tissues and have been classified into two broad subtypes: the phenol sulfotransferases (SULT1) and steroid sulfotransferases (SULT2) (29Coughtrie M. Sharp S. Maxwell K. Innes N. Chem. Biol. Interact. 1998; 109: 3-27Crossref PubMed Scopus (187) Google Scholar, 30Falany C. FASEB J. 1997; 11: 206-216Crossref PubMed Scopus (517) Google Scholar). The human SULT1 family is made up of at least six homodimeric enzymes with amino acid identities ranging from 47 to 96%. SULT1A3, sometimes called monoamine-sulfating phenol sulfotransferase, exhibits a strong substrate preference for catecholamines such as dopamine. Two closely related but kinetically distinct isoforms, SULT1A1 and SULT1A2, also known as phenol-sulfating phenol sulfotransferases, show a distinct preference for phenols such as 4-nitrophenol (30Falany C. FASEB J. 1997; 11: 206-216Crossref PubMed Scopus (517) Google Scholar, 37Ozawa S. Nagata K. Shimada M. Ueda M. Tsuzuki T. Yamazoe T. Kato R. Pharmacogenetics. 1995; 5: S135-S140Crossref PubMed Scopus (65) Google Scholar, 38Zhu X. Veronese M. Iocco P. McManus M. Int. J. Biochem. Cell Biol. 1996; 28: 565-571Crossref PubMed Scopus (57) Google Scholar). On the basis of their structural similarity to these sulfotransferase substrates (Fig. 1), it seems likely that alkylphenols may be substrates or inhibitors of either SULT1A1/2 and/or SULT1A3. Furthermore, SULT1A1/2 can sulfate 17β-estradiol and other estrogens in human liver extracts and is the major route of estrogen sulfation in some breast cancer cell lines (39Hernandez J.S. Watson R.W.G. Wood T.C. Weinshilboum R.M. Drug Metab. Dispos. 1992; 20: 413-422PubMed Google Scholar, 40Falany J. Lawing L. Falany C. J. Steroid Biochem. Mol. Biol. 1993; 46: 481-487Crossref PubMed Scopus (42) Google Scholar, 41Falany J. Falany C. Cancer Res. 1996; 56: 1551-1555PubMed Google Scholar, 42Falany C. Wheeler J. Oh T.-S. Falany J. J. Steroid Biochem. Mol. Biol. 1994; 48: 369-375Crossref PubMed Scopus (164) Google Scholar). Hence, if alkylphenols do influence SULT1A1/2 activity, they might also be expected to interfere with estrogen sulfation in these, and possibly other, cancer cells. Endocrine disrupters are exogenous substances in the environment which can influence endocrine function in humans and other animals (1US-EPAEndocrine Disrupter Screening and Testing Advisory Committee Draft Report. Society of the Plastics Industry, Inc., Washington, D.C.1998Google Scholar). A number of these chemicals have estrogenic activity and are thus termed “xenoestrogens.” Phytoestrogens are naturally occurring xenoestrogens produced by plants. Man-made xenoestrogens include the alkylphenols, nonylphenol and octylphenol, and bisphenol A; environmental exposure to these compounds has been reported to modify sexual development and reproductive function in amphibians (2Lutz I. Kloas W. Sci. Total Environ. 1999; 225: 49-57Crossref PubMed Scopus (135) Google Scholar, 3Kloas W. Lutz I. Einspanier R. Sci. Total Environ. 1999; 225: 59-68Crossref PubMed Scopus (288) Google Scholar), crustacea (4Ganmo A. Ekelund R. Magnusson K. Berggren M. Environ. Pollut. 1989; 59: 115-127Crossref PubMed Scopus (97) Google Scholar, 5Zou E. Fingerman M. Ecotoxicol. Environ. Safety. 1999; 42: 185-190Crossref PubMed Scopus (50) Google Scholar), and fish (6Sumpter J. Toxicol. Lett. 1998; 102/103: 337-342Crossref Scopus (236) Google Scholar). In mammals, evidence is less clear, but there is widespread public concern that they may exert similar effects on human reproductive health and be involved in the initiation of some hormone-dependent cancers (7Toppari J. Larsen J. Christiansen P. Giwercman A. Grandjean P. Guillette L. Jegou B. Jensen T. Jouannet P. Keiding N. Leffers H. McLaclan J. Meyer O. Muller J. Rajpert-DeMeyts E. Scheike T. Sharpe R. Sumpter J. Skakkebaek N. Environ. Health Perspect. 1996; 104 (Suppl. 4): 741-803PubMed Google Scholar, 8Miller W. Sharpe R. Endocr. Rel. Cancer. 1998; 5: 69-96Crossref Scopus (65) Google Scholar, 9Sharpe R. Atanassova N. McKinnell C. Parte P. Turner J. Fisher J. Kerr J. Groome N. Macpherson S. Millar M. Sanders P. Biol. Reprod. 1998; 59: 1084-1094Crossref PubMed Scopus (169) Google Scholar, 10Roy D. Palangat M. Chen C.-W. Thomas R. Colerangle J. Atkinson A. Yan Z.-J. J. Toxicol. Environ. Health. 1997; 50: 1-29Crossref PubMed Scopus (200) Google Scholar, 11Ashby J. Tinwell H. Lefevre P. Odum J. Paton S. Milward S. Tittensor S. Brooks A. Regul. Toxicol. Pharmacol. 1997; 26: 102-118Crossref PubMed Scopus (72) Google Scholar, 12Cunny H. Mayes B. Rosica K. Trutter J. Van Miller J. Regul. Toxicol. Pharmacol. 1997; 26: 172-178Crossref PubMed Scopus (77) Google Scholar, 13Odum J. Pyrah I. Foster R. Van Miller J. Joiner R. Ashby J. Regul. Toxicol. Pharmacol. 1999; 29: 184-195Crossref PubMed Scopus (41) Google Scholar, 14Nagel S. Vom Saal F. Welshons W. J. Steroid Biochem. Mol. Biol. 1999; 69: 343-357Crossref PubMed Scopus (64) Google Scholar). 17β-Estradiol and alkylphenols share a common structural motif in the phenolic A ring of 17β-estradiol and the phenol moiety of alkylphenols (Fig. 1), and it has been suggested that alkylphenols may act as endocrine disrupters by mimicking the activity of 17β-estradiol at estrogen receptors. Indeed, in a variety of cells transfected with human estrogen receptors, alkylphenols have been shown to bind weakly and provoke modest estrogenic effects (15Routledge E. Sumpter J. J. Biol. Chem. 1997; 272: 3280-3288Abstract Full Text Full Text PDF PubMed Scopus (442) Google Scholar, 16Pennie W. Aldridge T. Brooks A. J. Endocrinol. 1998; 158: R11-R14Crossref PubMed Scopus (99) Google Scholar, 17Tabira Y. Nakai M. Asai D. Yakabe Y. Tahara Y. Shinoyokuma T. Noguchi M. Takatsuki M. Shimohigashi Y. Eur. J. Biochem. 1999; 262: 240-245Crossref PubMed Scopus (84) Google Scholar). Conversely, alkylphenols have been reported to promote estrogenic signaling by inhibiting androgen receptor activation in some tissues (18Sohoni P. Sumpter J. J. Endocrinol. 1998; 158: 327-339Crossref PubMed Scopus (722) Google Scholar, 19Tran D. Klotz D. Ladlie B. Ide C. McLachlan J. Arnold S. Biochem. Biophys. Res. Commun. 1996; 229: 518-523Crossref PubMed Scopus (41) Google Scholar). However, there is also evidence that alkylphenols can disrupt endocrine-mediated events by inhibiting enzymes involved in the metabolism of sex steroids. Thus exposure of rats to octylphenol during fetal or perinatal development has been shown to decrease the expression of P450 17α-hydroxylase/C17–20 lyase (20Majdic G. Sharpe R. O'Shaughnessy P. Saunders P. Endocrinology. 1996; 137: 1063-1070Crossref PubMed Scopus (135) Google Scholar, 21Saunders P. Majdic G. Parte P. Millar M. Fisher J. Turner K. Sharpe R. Adv. Exp. Med. Biol. 1997; 424: 99-110Crossref PubMed Scopus (56) Google Scholar), the enzyme system responsible for the transformation of C21 steroids into C19steroids. Hence, exposure to alkylphenols may disrupt the production of both androgens and estrogens at key times during development. By acting as structural mimetics, alkylphenols may also disrupt the elimination of steroids from the body. Estrogenic hormones are excreted from the body following metabolic conversion to biologically less active water-soluble metabolites via cytochrome P450-mediated hydroxylation, glucuronidation, O-methylation, or sulfation (22Zhu B. Conney A. Carcinogenesis. 1998; 19: 1-27Crossref PubMed Scopus (830) Google Scholar), and many of these pathways are also utilized for the metabolism of alkylphenols in fish and mammals (23Meldahl A. Nithipatikom K. Lech J. Xenobiotica. 1996; 26: 1167-1180Crossref PubMed Scopus (42) Google Scholar, 24Thibaut R. Debrauwer L. Rao D. Cravedi J. Xenobiotica. 1998; 28: 745-757Crossref PubMed Scopus (47) Google Scholar, 25Lee P. Marquardt M. Lech J. Toxicol. Lett. 1998; 99: 117-126Crossref PubMed Scopus (25) Google Scholar, 26Hosea N. Guengerich P. Arch. Biochem. Biophys. 1998; 353: 365-373Crossref PubMed Scopus (32) Google Scholar, 27Certa H. Fedtke N. Wiegand H.-J. Muller H. Bolt H. Arch. Toxicol. 1996; 71: 112-122Crossref PubMed Scopus (91) Google Scholar). Exposure of the invertebrate Daphnia magna to either nonylphenol polyethoxylate or nonylphenol has been shown to disrupt endocrine function by decreasing both the glucuronidation and sulfation of testosterone (28Baldwin W. Graham S. Shea D. LeBlanc G. Ecotoxicol. Environ. Safety. 1998; 39: 104-111Crossref PubMed Scopus (48) Google Scholar), but it was not demonstrated whether the alkylphenols were substrates for the D. magna testosterone sulfotransferase in this study. Sulfation has a major role in regulating the active concentrations of a variety of biologically important molecules, including steroids, catecholamines, and peptides, and it is also important in the detoxification of many xenobiotics (29Coughtrie M. Sharp S. Maxwell K. Innes N. Chem. Biol. Interact. 1998; 109: 3-27Crossref PubMed Scopus (187) Google Scholar, 30Falany C. FASEB J. 1997; 11: 206-216Crossref PubMed Scopus (517) Google Scholar). In humans, the balance of sulfation and desulfation plays an important role in modulating the activity and transport of steroid hormones: the “inactive” sulfated forms of many steroids, particularly estrone and dehydroepiandrosterone, are found in the circulation at concentrations 10–30-fold higher than the unconjugated steroids. Furthermore, sulfation appears to prolong the half-life of these compounds in the circulation. Hence steroid sulfates represent an important depot of potentially “active” steroids following desulfation by steroid sulfatases (31Pasqualini J. Gelly C. Nguyen B. Vella C. J. Steroid Biochem. 1989; 34: 155-163Crossref PubMed Scopus (235) Google Scholar, 32Ruder H. Loriaux L. Lipsett M. J. Clin. Invest. 1972; 51: 1022-1033Crossref Scopus (240) Google Scholar, 33Santner R. Feil P. Santen R. J. Clin. Endocrinol. Metab. 1984; 59: 29-33Crossref PubMed Scopus (400) Google Scholar). Hydrolysis of estrone sulfate by steroid sulfatase is the major source of plasma estrogens in men and postmenopausal women, and the activity of steroid sulfatase is elevated in breast tumors (33Santner R. Feil P. Santen R. J. Clin. Endocrinol. Metab. 1984; 59: 29-33Crossref PubMed Scopus (400) Google Scholar). In fact, there is a strong inverse correlation between the level of expression of steroid sulfatase within breast tumors and disease-free survival times (34Utsumi T. Yoshimura N. Takeuchi S. Ando J. Maruta M. Maeda K. Harada N. Cancer Res. 1999; 59: 377-381PubMed Google Scholar). In many breast tumors, estrogen sulfotransferase activity is much lower than in normal breast tissue, and loss of this “inactivating” pathway may explain why tumor cells are extremely sensitive to the mitogenic effects of estradiol and estrone sulfate (35Qian Y. Deng C. Song W.-C. J. Pharm. Exp. Ther. 1998; 286: 555-560PubMed Google Scholar, 36Le Bail J. Allen K. Nicolas J. Habrioux G. Anticancer Res. 1998; 18: 1683-1688PubMed Google Scholar). Sulfation reactions require PAPS1 as a sulfate donor and are catalyzed by members of the SULT family. These enzymes are widely expressed in human tissues and have been classified into two broad subtypes: the phenol sulfotransferases (SULT1) and steroid sulfotransferases (SULT2) (29Coughtrie M. Sharp S. Maxwell K. Innes N. Chem. Biol. Interact. 1998; 109: 3-27Crossref PubMed Scopus (187) Google Scholar, 30Falany C. FASEB J. 1997; 11: 206-216Crossref PubMed Scopus (517) Google Scholar). The human SULT1 family is made up of at least six homodimeric enzymes with amino acid identities ranging from 47 to 96%. SULT1A3, sometimes called monoamine-sulfating phenol sulfotransferase, exhibits a strong substrate preference for catecholamines such as dopamine. Two closely related but kinetically distinct isoforms, SULT1A1 and SULT1A2, also known as phenol-sulfating phenol sulfotransferases, show a distinct preference for phenols such as 4-nitrophenol (30Falany C. FASEB J. 1997; 11: 206-216Crossref PubMed Scopus (517) Google Scholar, 37Ozawa S. Nagata K. Shimada M. Ueda M. Tsuzuki T. Yamazoe T. Kato R. Pharmacogenetics. 1995; 5: S135-S140Crossref PubMed Scopus (65) Google Scholar, 38Zhu X. Veronese M. Iocco P. McManus M. Int. J. Biochem. Cell Biol. 1996; 28: 565-571Crossref PubMed Scopus (57) Google Scholar). On the basis of their structural similarity to these sulfotransferase substrates (Fig. 1), it seems likely that alkylphenols may be substrates or inhibitors of either SULT1A1/2 and/or SULT1A3. Furthermore, SULT1A1/2 can sulfate 17β-estradiol and other estrogens in human liver extracts and is the major route of estrogen sulfation in some breast cancer cell lines (39Hernandez J.S. Watson R.W.G. Wood T.C. Weinshilboum R.M. Drug Metab. Dispos. 1992; 20: 413-422PubMed Google Scholar, 40Falany J. Lawing L. Falany C. J. Steroid Biochem. Mol. Biol. 1993; 46: 481-487Crossref PubMed Scopus (42) Google Scholar, 41Falany J. Falany C. Cancer Res. 1996; 56: 1551-1555PubMed Google Scholar, 42Falany C. Wheeler J. Oh T.-S. Falany J. J. Steroid Biochem. Mol. Biol. 1994; 48: 369-375Crossref PubMed Scopus (164) Google Scholar). Hence, if alkylphenols do influence SULT1A1/2 activity, they might also be expected to interfere with estrogen sulfation in these, and possibly other, cancer cells." @default.
- W1994131134 created "2016-06-24" @default.
- W1994131134 creator A5005327716 @default.
- W1994131134 creator A5010820122 @default.
- W1994131134 creator A5019847181 @default.
- W1994131134 creator A5025740932 @default.
- W1994131134 date "2000-01-01" @default.
- W1994131134 modified "2023-10-17" @default.
- W1994131134 title "Sulfation of “Estrogenic” Alkylphenols and 17β-Estradiol by Human Platelet Phenol Sulfotransferases" @default.
- W1994131134 cites W1530974401 @default.
- W1994131134 cites W1556130489 @default.
- W1994131134 cites W1849763436 @default.
- W1994131134 cites W1935458565 @default.
- W1994131134 cites W1939007826 @default.
- W1994131134 cites W1939905704 @default.
- W1994131134 cites W1965246229 @default.
- W1994131134 cites W1966580942 @default.
- W1994131134 cites W1968379731 @default.
- W1994131134 cites W1971212602 @default.
- W1994131134 cites W1971544456 @default.
- W1994131134 cites W1973847024 @default.
- W1994131134 cites W1976196587 @default.
- W1994131134 cites W1979489514 @default.
- W1994131134 cites W1979976408 @default.
- W1994131134 cites W1980545656 @default.
- W1994131134 cites W1984505053 @default.
- W1994131134 cites W1990721641 @default.
- W1994131134 cites W1995586718 @default.
- W1994131134 cites W1997950539 @default.
- W1994131134 cites W2003965848 @default.
- W1994131134 cites W2005772074 @default.
- W1994131134 cites W2010993034 @default.
- W1994131134 cites W2015961933 @default.
- W1994131134 cites W2025856527 @default.
- W1994131134 cites W2027208794 @default.
- W1994131134 cites W2036142628 @default.
- W1994131134 cites W2036469946 @default.
- W1994131134 cites W2037474761 @default.
- W1994131134 cites W2040526867 @default.
- W1994131134 cites W2044080575 @default.
- W1994131134 cites W2045814511 @default.
- W1994131134 cites W2047290064 @default.
- W1994131134 cites W2056844589 @default.
- W1994131134 cites W2059412827 @default.
- W1994131134 cites W2065695329 @default.
- W1994131134 cites W2069724569 @default.
- W1994131134 cites W2070680781 @default.
- W1994131134 cites W2074364568 @default.
- W1994131134 cites W2075300826 @default.
- W1994131134 cites W2076209833 @default.
- W1994131134 cites W2090911931 @default.
- W1994131134 cites W2107410297 @default.
- W1994131134 cites W2108241608 @default.
- W1994131134 cites W2114254036 @default.
- W1994131134 cites W2120960560 @default.
- W1994131134 cites W2127595630 @default.
- W1994131134 cites W2130266468 @default.
- W1994131134 cites W2134813673 @default.
- W1994131134 cites W2144862051 @default.
- W1994131134 cites W2160143312 @default.
- W1994131134 cites W4293247451 @default.
- W1994131134 doi "https://doi.org/10.1074/jbc.275.1.159" @default.
- W1994131134 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/10617600" @default.
- W1994131134 hasPublicationYear "2000" @default.
- W1994131134 type Work @default.
- W1994131134 sameAs 1994131134 @default.
- W1994131134 citedByCount "71" @default.
- W1994131134 countsByYear W19941311342012 @default.
- W1994131134 countsByYear W19941311342013 @default.
- W1994131134 countsByYear W19941311342015 @default.
- W1994131134 countsByYear W19941311342016 @default.
- W1994131134 countsByYear W19941311342018 @default.
- W1994131134 countsByYear W19941311342019 @default.
- W1994131134 countsByYear W19941311342020 @default.
- W1994131134 countsByYear W19941311342021 @default.
- W1994131134 countsByYear W19941311342022 @default.
- W1994131134 countsByYear W19941311342023 @default.
- W1994131134 crossrefType "journal-article" @default.
- W1994131134 hasAuthorship W1994131134A5005327716 @default.
- W1994131134 hasAuthorship W1994131134A5010820122 @default.
- W1994131134 hasAuthorship W1994131134A5019847181 @default.
- W1994131134 hasAuthorship W1994131134A5025740932 @default.
- W1994131134 hasBestOaLocation W19941311341 @default.
- W1994131134 hasConcept C126322002 @default.
- W1994131134 hasConcept C155138218 @default.
- W1994131134 hasConcept C178790620 @default.
- W1994131134 hasConcept C185592680 @default.
- W1994131134 hasConcept C2777702071 @default.
- W1994131134 hasConcept C43617362 @default.
- W1994131134 hasConcept C55493867 @default.
- W1994131134 hasConcept C71924100 @default.
- W1994131134 hasConcept C89560881 @default.
- W1994131134 hasConceptScore W1994131134C126322002 @default.
- W1994131134 hasConceptScore W1994131134C155138218 @default.
- W1994131134 hasConceptScore W1994131134C178790620 @default.
- W1994131134 hasConceptScore W1994131134C185592680 @default.
- W1994131134 hasConceptScore W1994131134C2777702071 @default.
- W1994131134 hasConceptScore W1994131134C43617362 @default.