Matches in SemOpenAlex for { <https://semopenalex.org/work/W1994175235> ?p ?o ?g. }
- W1994175235 endingPage "9206" @default.
- W1994175235 startingPage "9191" @default.
- W1994175235 abstract "There are several neural network implementations using either software, hardware-based or a hardware/software co-design. This work proposes a hardware architecture to implement an artificial neural network (ANN), whose topology is the multilayer perceptron (MLP). In this paper, we explore the parallelism of neural networks and allow on-the-fly changes of the number of inputs, number of layers and number of neurons per layer of the net. This reconfigurability characteristic permits that any application of ANNs may be implemented using the proposed hardware. In order to reduce the processing time that is spent in arithmetic computation, a real number is represented using a fraction of integers. In this way, the arithmetic is limited to integer operations, performed by fast combinational circuits. A simple state machine is required to control sums and products of fractions. Sigmoid is used as the activation function in the proposed implementation. It is approximated by polynomials, whose underlying computation requires only sums and products. A theorem is introduced and proven so as to cover the arithmetic strategy of the computation of the activation function. Thus, the arithmetic circuitry used to implement the neuron weighted sum is reused for computing the sigmoid. This resource sharing decreased drastically the total area of the system. After modeling and simulation for functionality validation, the proposed architecture synthesized using reconfigurable hardware. The results are promising." @default.
- W1994175235 created "2016-06-24" @default.
- W1994175235 creator A5048916912 @default.
- W1994175235 creator A5073144373 @default.
- W1994175235 creator A5084920912 @default.
- W1994175235 date "2012-08-01" @default.
- W1994175235 modified "2023-10-01" @default.
- W1994175235 title "Compact yet efficient hardware implementation of artificial neural networks with customized topology" @default.
- W1994175235 cites W1525549684 @default.
- W1994175235 cites W1977060095 @default.
- W1994175235 cites W1977158363 @default.
- W1994175235 cites W1979841925 @default.
- W1994175235 cites W2027576594 @default.
- W1994175235 cites W2028364139 @default.
- W1994175235 cites W2042659401 @default.
- W1994175235 cites W2051267853 @default.
- W1994175235 cites W2063508500 @default.
- W1994175235 cites W2068469823 @default.
- W1994175235 cites W2075832003 @default.
- W1994175235 cites W2117671523 @default.
- W1994175235 cites W2150640671 @default.
- W1994175235 cites W2151747513 @default.
- W1994175235 cites W2151952385 @default.
- W1994175235 cites W2154203817 @default.
- W1994175235 cites W2169095047 @default.
- W1994175235 cites W2238334874 @default.
- W1994175235 cites W4246542941 @default.
- W1994175235 doi "https://doi.org/10.1016/j.eswa.2012.02.085" @default.
- W1994175235 hasPublicationYear "2012" @default.
- W1994175235 type Work @default.
- W1994175235 sameAs 1994175235 @default.
- W1994175235 citedByCount "22" @default.
- W1994175235 countsByYear W19941752352012 @default.
- W1994175235 countsByYear W19941752352014 @default.
- W1994175235 countsByYear W19941752352015 @default.
- W1994175235 countsByYear W19941752352016 @default.
- W1994175235 countsByYear W19941752352017 @default.
- W1994175235 countsByYear W19941752352018 @default.
- W1994175235 countsByYear W19941752352019 @default.
- W1994175235 countsByYear W19941752352020 @default.
- W1994175235 countsByYear W19941752352021 @default.
- W1994175235 countsByYear W19941752352022 @default.
- W1994175235 countsByYear W19941752352023 @default.
- W1994175235 crossrefType "journal-article" @default.
- W1994175235 hasAuthorship W1994175235A5048916912 @default.
- W1994175235 hasAuthorship W1994175235A5073144373 @default.
- W1994175235 hasAuthorship W1994175235A5084920912 @default.
- W1994175235 hasConcept C11413529 @default.
- W1994175235 hasConcept C114614502 @default.
- W1994175235 hasConcept C142962650 @default.
- W1994175235 hasConcept C154945302 @default.
- W1994175235 hasConcept C173608175 @default.
- W1994175235 hasConcept C184720557 @default.
- W1994175235 hasConcept C199360897 @default.
- W1994175235 hasConcept C2777904410 @default.
- W1994175235 hasConcept C2780149590 @default.
- W1994175235 hasConcept C33923547 @default.
- W1994175235 hasConcept C38365724 @default.
- W1994175235 hasConcept C41008148 @default.
- W1994175235 hasConcept C42935608 @default.
- W1994175235 hasConcept C45374587 @default.
- W1994175235 hasConcept C50644808 @default.
- W1994175235 hasConcept C60908668 @default.
- W1994175235 hasConcept C65232700 @default.
- W1994175235 hasConcept C76155785 @default.
- W1994175235 hasConcept C81388566 @default.
- W1994175235 hasConcept C9390403 @default.
- W1994175235 hasConceptScore W1994175235C11413529 @default.
- W1994175235 hasConceptScore W1994175235C114614502 @default.
- W1994175235 hasConceptScore W1994175235C142962650 @default.
- W1994175235 hasConceptScore W1994175235C154945302 @default.
- W1994175235 hasConceptScore W1994175235C173608175 @default.
- W1994175235 hasConceptScore W1994175235C184720557 @default.
- W1994175235 hasConceptScore W1994175235C199360897 @default.
- W1994175235 hasConceptScore W1994175235C2777904410 @default.
- W1994175235 hasConceptScore W1994175235C2780149590 @default.
- W1994175235 hasConceptScore W1994175235C33923547 @default.
- W1994175235 hasConceptScore W1994175235C38365724 @default.
- W1994175235 hasConceptScore W1994175235C41008148 @default.
- W1994175235 hasConceptScore W1994175235C42935608 @default.
- W1994175235 hasConceptScore W1994175235C45374587 @default.
- W1994175235 hasConceptScore W1994175235C50644808 @default.
- W1994175235 hasConceptScore W1994175235C60908668 @default.
- W1994175235 hasConceptScore W1994175235C65232700 @default.
- W1994175235 hasConceptScore W1994175235C76155785 @default.
- W1994175235 hasConceptScore W1994175235C81388566 @default.
- W1994175235 hasConceptScore W1994175235C9390403 @default.
- W1994175235 hasIssue "10" @default.
- W1994175235 hasLocation W19941752351 @default.
- W1994175235 hasOpenAccess W1994175235 @default.
- W1994175235 hasPrimaryLocation W19941752351 @default.
- W1994175235 hasRelatedWork W1975769771 @default.
- W1994175235 hasRelatedWork W1987886632 @default.
- W1994175235 hasRelatedWork W2029228817 @default.
- W1994175235 hasRelatedWork W2100277042 @default.
- W1994175235 hasRelatedWork W2103292044 @default.
- W1994175235 hasRelatedWork W2471676342 @default.
- W1994175235 hasRelatedWork W2912776959 @default.