Matches in SemOpenAlex for { <https://semopenalex.org/work/W1994314301> ?p ?o ?g. }
- W1994314301 endingPage "644" @default.
- W1994314301 startingPage "628" @default.
- W1994314301 abstract "Understanding the transport and distribution of marine larvae by ocean currents is one of the key goals of population ecology. Here we investigate circulation in the East Australian Current (EAC) and its impact on the transport of larvae and coastal connectivity. A series of Lagrangian particle trajectory experiments are conducted in summer and winter from 1992–2006 which enables us to investigate seasonal and inter-annual variability. We also estimate a mean connectivity state from the average of each of the individual realisations. Connectivity patterns are related to the movement of five individual larval species (two tropical, two temperate and one invasive species) and are found to be in qualitative agreement with historical distribution patterns found along the coast of SE Australia. We use a configuration of the Princeton Ocean Model to investigate physical processes in the ocean along the coast of SE Australia where the circulation is dominated by the EAC, a vigorous western boundary current. We assimilate hydrographic fields from a ∼10‐km global analysis into a ∼3‐km resolution continental shelf model to create a high-resolution hindcast of ocean state for each summer and winter from 1992–2006. Particles are released along the coast of SE Australia, and at various isobaths across the shelf (25–1000 m) over timescales ranging from 10–90 days. Upstream of the EAC separation point across-shelf release location dominates the particle trajectory length scales, whereas seasonality dominates in the southern half of the domain, downstream of the separation point. Lagrangian probability density functions show dispersion pathways vary with release latitude, distance offshore and the timescale of dispersion. Northern (southern) release sites are typified by maximum (minimum) dispersal pathways. Offshore release distance also plays a role having the greatest impact at the mid-latitude release sites. Maximum alongshore dispersion occurs at the mid-latitude release sites such as Sydney. Seasonal variability is also greatest at mid-latitudes, associated with variations in the separation point of the EAC. Climatic variations such as El Niño and La Niña are also shown to play a role in dictating the connectivity patterns. La Niña periods have a tendency to increase summer time connectivity (particularly with offshore release sites) while El Niño periods are shown to increase winter connectivity. The EAC acts as a barrier to the onshore movement of particles offshore, which impacts on the connectivity of offshore release sites. Consequentially particles released inshore of the EAC jet exhibit a greater coastal connectivity than those released offshore of the EAC front. The separation point of the EAC also dictates connectivity with more sites being connected (with lower concentration) downstream of the separation point of the EAC. These results can provide a useful guide to the potential connectivity of marine populations, or the spread of invasive pests (via ballast water or release of propagules from established populations)." @default.
- W1994314301 created "2016-06-24" @default.
- W1994314301 creator A5037375915 @default.
- W1994314301 creator A5043709170 @default.
- W1994314301 creator A5065491667 @default.
- W1994314301 creator A5073823593 @default.
- W1994314301 date "2011-03-01" @default.
- W1994314301 modified "2023-10-12" @default.
- W1994314301 title "Modelling coastal connectivity in a Western Boundary Current: Seasonal and inter-annual variability" @default.
- W1994314301 cites W1587456485 @default.
- W1994314301 cites W1976391619 @default.
- W1994314301 cites W1982272399 @default.
- W1994314301 cites W2009531438 @default.
- W1994314301 cites W2009672665 @default.
- W1994314301 cites W2014253435 @default.
- W1994314301 cites W2031756966 @default.
- W1994314301 cites W2036975006 @default.
- W1994314301 cites W2038742869 @default.
- W1994314301 cites W2039711807 @default.
- W1994314301 cites W2041342278 @default.
- W1994314301 cites W2043487668 @default.
- W1994314301 cites W2044147627 @default.
- W1994314301 cites W2055394942 @default.
- W1994314301 cites W2061745923 @default.
- W1994314301 cites W2069384562 @default.
- W1994314301 cites W2072449747 @default.
- W1994314301 cites W2077391889 @default.
- W1994314301 cites W2078992396 @default.
- W1994314301 cites W2080862648 @default.
- W1994314301 cites W2081056398 @default.
- W1994314301 cites W2081104167 @default.
- W1994314301 cites W2085643757 @default.
- W1994314301 cites W2086243092 @default.
- W1994314301 cites W2090034662 @default.
- W1994314301 cites W2097195623 @default.
- W1994314301 cites W2097802608 @default.
- W1994314301 cites W2099052378 @default.
- W1994314301 cites W2107903493 @default.
- W1994314301 cites W2109372948 @default.
- W1994314301 cites W2114869596 @default.
- W1994314301 cites W2116825962 @default.
- W1994314301 cites W2129536134 @default.
- W1994314301 cites W2137452046 @default.
- W1994314301 cites W2140618008 @default.
- W1994314301 cites W2157911226 @default.
- W1994314301 cites W2159540936 @default.
- W1994314301 cites W2166600639 @default.
- W1994314301 cites W2167699034 @default.
- W1994314301 cites W2168795429 @default.
- W1994314301 cites W2171747416 @default.
- W1994314301 cites W2173251738 @default.
- W1994314301 cites W2178512653 @default.
- W1994314301 cites W2180377476 @default.
- W1994314301 cites W3086068119 @default.
- W1994314301 doi "https://doi.org/10.1016/j.dsr2.2010.06.004" @default.
- W1994314301 hasPublicationYear "2011" @default.
- W1994314301 type Work @default.
- W1994314301 sameAs 1994314301 @default.
- W1994314301 citedByCount "79" @default.
- W1994314301 countsByYear W19943143012012 @default.
- W1994314301 countsByYear W19943143012013 @default.
- W1994314301 countsByYear W19943143012014 @default.
- W1994314301 countsByYear W19943143012015 @default.
- W1994314301 countsByYear W19943143012016 @default.
- W1994314301 countsByYear W19943143012017 @default.
- W1994314301 countsByYear W19943143012018 @default.
- W1994314301 countsByYear W19943143012019 @default.
- W1994314301 countsByYear W19943143012020 @default.
- W1994314301 countsByYear W19943143012021 @default.
- W1994314301 countsByYear W19943143012022 @default.
- W1994314301 countsByYear W19943143012023 @default.
- W1994314301 crossrefType "journal-article" @default.
- W1994314301 hasAuthorship W1994314301A5037375915 @default.
- W1994314301 hasAuthorship W1994314301A5043709170 @default.
- W1994314301 hasAuthorship W1994314301A5065491667 @default.
- W1994314301 hasAuthorship W1994314301A5073823593 @default.
- W1994314301 hasConcept C111368507 @default.
- W1994314301 hasConcept C121332964 @default.
- W1994314301 hasConcept C125403950 @default.
- W1994314301 hasConcept C127313418 @default.
- W1994314301 hasConcept C144024400 @default.
- W1994314301 hasConcept C148043351 @default.
- W1994314301 hasConcept C149923435 @default.
- W1994314301 hasConcept C187599188 @default.
- W1994314301 hasConcept C18903297 @default.
- W1994314301 hasConcept C205649164 @default.
- W1994314301 hasConcept C2908647359 @default.
- W1994314301 hasConcept C37914503 @default.
- W1994314301 hasConcept C39432304 @default.
- W1994314301 hasConcept C49204034 @default.
- W1994314301 hasConcept C53469067 @default.
- W1994314301 hasConcept C60069189 @default.
- W1994314301 hasConcept C76256466 @default.
- W1994314301 hasConcept C81461190 @default.
- W1994314301 hasConcept C83002819 @default.
- W1994314301 hasConcept C86803240 @default.
- W1994314301 hasConcept C95826659 @default.
- W1994314301 hasConceptScore W1994314301C111368507 @default.