Matches in SemOpenAlex for { <https://semopenalex.org/work/W1994350047> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W1994350047 endingPage "5732" @default.
- W1994350047 startingPage "5723" @default.
- W1994350047 abstract "Abstract Artificial intelligence techniques aimed at more naturally simulating human comprehension fit the paradigm of multi-label classification. Generally, an enormous amount of high-quality multi-label data is needed to form a multi-label classifier. The creation of such datasets is usually expensive and time-consuming. A lower cost way to obtain multi-label datasets for use with such comprehension–simulation techniques is to use noisy crowdsourced annotations. We propose incorporating label dependency into the label-generation process to estimate the multiple true labels for each instance given crowdsourced multi-label annotations. Three statistical quality control models based on the work of Dawid and Skene are proposed. The label-dependent DS (D-DS) model simply incorporates dependency relationships among all labels. The label pairwise DS (P-DS) model groups labels into pairs to prevent interference from uncorrelated labels. The Bayesian network label-dependent DS (ND-DS) model compactly represents label dependency using conditional independence properties to overcome the data sparsity problem. Results of two experiments, “affect annotation for lines in story” and “intention annotation for tweets”, show that (1) the ND-DS model most effectively handles the multi-label estimation problem with annotations provided by only about five workers per instance and that (2) the P-DS model is best if there are pairwise comparison relationships among the labels. To sum up, flexibly using label dependency to obtain multi-label datasets is a promising way to reduce the cost of data collection for future applications with minimal degradation in the quality of the results." @default.
- W1994350047 created "2016-06-24" @default.
- W1994350047 creator A5037256437 @default.
- W1994350047 creator A5054412358 @default.
- W1994350047 creator A5056709028 @default.
- W1994350047 creator A5071020251 @default.
- W1994350047 date "2014-10-01" @default.
- W1994350047 modified "2023-09-27" @default.
- W1994350047 title "Separate or joint? Estimation of multiple labels from crowdsourced annotations" @default.
- W1994350047 cites W1581885440 @default.
- W1994350047 cites W1965555277 @default.
- W1994350047 cites W2020111801 @default.
- W1994350047 cites W2024459921 @default.
- W1994350047 cites W2060906687 @default.
- W1994350047 cites W2163166770 @default.
- W1994350047 cites W4233756358 @default.
- W1994350047 cites W9014458 @default.
- W1994350047 doi "https://doi.org/10.1016/j.eswa.2014.03.048" @default.
- W1994350047 hasPublicationYear "2014" @default.
- W1994350047 type Work @default.
- W1994350047 sameAs 1994350047 @default.
- W1994350047 citedByCount "34" @default.
- W1994350047 countsByYear W19943500472015 @default.
- W1994350047 countsByYear W19943500472016 @default.
- W1994350047 countsByYear W19943500472017 @default.
- W1994350047 countsByYear W19943500472018 @default.
- W1994350047 countsByYear W19943500472019 @default.
- W1994350047 countsByYear W19943500472020 @default.
- W1994350047 countsByYear W19943500472021 @default.
- W1994350047 countsByYear W19943500472022 @default.
- W1994350047 countsByYear W19943500472023 @default.
- W1994350047 crossrefType "journal-article" @default.
- W1994350047 hasAuthorship W1994350047A5037256437 @default.
- W1994350047 hasAuthorship W1994350047A5054412358 @default.
- W1994350047 hasAuthorship W1994350047A5056709028 @default.
- W1994350047 hasAuthorship W1994350047A5071020251 @default.
- W1994350047 hasBestOaLocation W19943500472 @default.
- W1994350047 hasConcept C119857082 @default.
- W1994350047 hasConcept C124101348 @default.
- W1994350047 hasConcept C127413603 @default.
- W1994350047 hasConcept C153180895 @default.
- W1994350047 hasConcept C154945302 @default.
- W1994350047 hasConcept C162324750 @default.
- W1994350047 hasConcept C170154142 @default.
- W1994350047 hasConcept C18555067 @default.
- W1994350047 hasConcept C187736073 @default.
- W1994350047 hasConcept C41008148 @default.
- W1994350047 hasConcept C96250715 @default.
- W1994350047 hasConceptScore W1994350047C119857082 @default.
- W1994350047 hasConceptScore W1994350047C124101348 @default.
- W1994350047 hasConceptScore W1994350047C127413603 @default.
- W1994350047 hasConceptScore W1994350047C153180895 @default.
- W1994350047 hasConceptScore W1994350047C154945302 @default.
- W1994350047 hasConceptScore W1994350047C162324750 @default.
- W1994350047 hasConceptScore W1994350047C170154142 @default.
- W1994350047 hasConceptScore W1994350047C18555067 @default.
- W1994350047 hasConceptScore W1994350047C187736073 @default.
- W1994350047 hasConceptScore W1994350047C41008148 @default.
- W1994350047 hasConceptScore W1994350047C96250715 @default.
- W1994350047 hasIssue "13" @default.
- W1994350047 hasLocation W19943500471 @default.
- W1994350047 hasLocation W19943500472 @default.
- W1994350047 hasOpenAccess W1994350047 @default.
- W1994350047 hasPrimaryLocation W19943500471 @default.
- W1994350047 hasRelatedWork W2030530201 @default.
- W1994350047 hasRelatedWork W2961085424 @default.
- W1994350047 hasRelatedWork W3046775127 @default.
- W1994350047 hasRelatedWork W3096054746 @default.
- W1994350047 hasRelatedWork W3107474891 @default.
- W1994350047 hasRelatedWork W4205958290 @default.
- W1994350047 hasRelatedWork W4286629047 @default.
- W1994350047 hasRelatedWork W4306321456 @default.
- W1994350047 hasRelatedWork W4306674287 @default.
- W1994350047 hasRelatedWork W4224009465 @default.
- W1994350047 hasVolume "41" @default.
- W1994350047 isParatext "false" @default.
- W1994350047 isRetracted "false" @default.
- W1994350047 magId "1994350047" @default.
- W1994350047 workType "article" @default.