Matches in SemOpenAlex for { <https://semopenalex.org/work/W1994364053> ?p ?o ?g. }
- W1994364053 endingPage "37502" @default.
- W1994364053 startingPage "37492" @default.
- W1994364053 abstract "The growth factor midkine (MK) is a cytokine that inhibits the attachment of human immunodeficiency virus particles by a mechanism similar to the nucleolin binding HB-19 pseudopeptide. Here we show that the binding of MK to cells occurs specifically at a high and a low affinity binding site. HB-19 prevents the binding of MK to the low affinity binding site only. Confocal immunofluorescence laser microscopy revealed the colocalization of MK and the cell-surface-expressed nucleolin at distinct spots. The use of various deletion constructs of nucleolin then indicated that the extreme C-terminal end of nucleolin, containing repeats of the amino acid motif RGG, is the domain that binds MK. The specific binding of MK to cells is independent of heparan sulfate and chondroitin sulfate expression. After binding to cells, MK enters cells by an active process. Interestingly, the cross-linking of surface-bound MK with a specific antibody results in the clustering of surface nucleolin along with glycosylphosphatidylinositol-linked proteins CD90 and CD59, thus, pointing out that MK binding induces lateral assemblies of nucleolin with specific membrane components of lipid rafts. Our results suggest that the cell surface-expressed nucleolin serves as a low affinity receptor for MK and could be implicated in its entry process. The growth factor midkine (MK) is a cytokine that inhibits the attachment of human immunodeficiency virus particles by a mechanism similar to the nucleolin binding HB-19 pseudopeptide. Here we show that the binding of MK to cells occurs specifically at a high and a low affinity binding site. HB-19 prevents the binding of MK to the low affinity binding site only. Confocal immunofluorescence laser microscopy revealed the colocalization of MK and the cell-surface-expressed nucleolin at distinct spots. The use of various deletion constructs of nucleolin then indicated that the extreme C-terminal end of nucleolin, containing repeats of the amino acid motif RGG, is the domain that binds MK. The specific binding of MK to cells is independent of heparan sulfate and chondroitin sulfate expression. After binding to cells, MK enters cells by an active process. Interestingly, the cross-linking of surface-bound MK with a specific antibody results in the clustering of surface nucleolin along with glycosylphosphatidylinositol-linked proteins CD90 and CD59, thus, pointing out that MK binding induces lateral assemblies of nucleolin with specific membrane components of lipid rafts. Our results suggest that the cell surface-expressed nucleolin serves as a low affinity receptor for MK and could be implicated in its entry process. midkine human immunodeficiency virus 5[Lysψ(CH2N)Pro-Arg]-template-assembled synthetic peptide Lysψ(CH2N)Pro-Arg nine-d-arginine peptide pleiotrophin fibroblast growth factor 2 monoclonal antibody phosphate-buffered saline fluorescein isothiocyanate long terminal repeat paraformaldehyde methyl-β-cyclodextrin glutathione S-transferase N-(9-fluorenyl)methoxycarbonyl Chinese hamster ovary fetal calf serum Midkine (MK)1 has been described as a heparin binding growth factor of 13 kDa that is rich in basic amino acids and cysteines. It has been shown to play a fundamental role in regulation of growth, differentiation, and development. Accordingly, MK expression has been reported to be elevated in embryonic periods, especially in the midgestation stage (1Muramatsu T. Develop. Growth Differ. 1994; 36: 1-8Crossref Scopus (59) Google Scholar, 2Muramatsu H. Shirahama H. Yonezawa S. Maruta H. Muramatsu T. Dev. Biol. 1993; 159: 392-402Crossref PubMed Scopus (233) Google Scholar, 3Kurtz A. Schulte A.M. Wellstein A. Crit. Rev. Oncog. 1995; 6: 151-177PubMed Google Scholar). The functional role of MK has been best demonstrated in the nervous system where MK enhances survival and neurite outgrowth of embryonic neurons and promotes neuronal differentiation (4Muramatsu H. Inui T. Kimura T. Sakakibara S. Song X.J. Maruta H. Muramatsu T. Biochem. Biophys. Res. Commun. 1994; 203: 1131-1139Crossref PubMed Scopus (63) Google Scholar). MK is also known to promote plasminogen activator activity in aortic endothelial cells, leading to increased fibrinolysis (5Kojima S. Inui T. Kimura T. Sakakibara S. Muramatsu H. Amanuma H. Maruta H. Muramatsu T. Biochem. Biophys. Res. Commun. 1995; 206: 468-473Crossref PubMed Scopus (45) Google Scholar). MK mRNA expression is increased in various human carcinomas (6Aridome K. Tsutsui J. Takao S. Kadomatsu K. Ozawa M. Aikou T. Muramatsu T. Jap. J. Cancer Res. 1995; 118: 88-93Google Scholar, 7Tsutsui J.I. Kadomatsu K. Matsubara S. Nakagawara A. Hamanoue M. Takao S. Shimazu H. Ohi Y. Muramatsu T. Cancer Res. 1993; 53: 1281-1285PubMed Google Scholar), and the MK protein has been reported to be required for the growth of the Wilms' tumor cellsin vitro (8Adachi Y. Matsubara S. Pedraza C. Ozawa M. Tsutsui J. Takamatsu H. Noguchi H. Akiyama T. Muramatsu T. Oncogene. 1996; 13: 2197-2203PubMed Google Scholar). Furthermore, MK has been shown to be accumulated in senile plaques of the brain of Alzheimer disease patients (9Yasuhara O. Muramatsu H. Kim S.U. Muramatsu T. Maruta H. McGeer P.L. Biochem. Biophys. Res. Commun. 1993; 192: 246-251Crossref PubMed Scopus (90) Google Scholar).Recently, we reported that synthetic and recombinant preparations of MK inhibit in a dose-dependent manner infection of cells by T lymphocyte- and macrophage-tropic HIV-1 isolates (10Callebaut C. Nisole S. Briand J.P. Krust B. Hovanessian A.G. Virology. 2001; 281: 248-264Crossref PubMed Scopus (46) Google Scholar). The mechanism of inhibition is due to the capacity of MK to bind cells specifically and prevent the attachment of HIV particles to cells. This latter is similar to the mechanism that we had described for the action of the nucleolin binding anti-HIV pseudopeptide HB-19 (11Nisole S. Krust B. Callebaut C. Guichard G. Muller S. Briand J.P. Hovanessian A.G. J. Biol. Chem. 1999; 274: 27875-27884Abstract Full Text Full Text PDF PubMed Scopus (70) Google Scholar, 12Nisole S. Krust B. Dam E. Blanco A. Seddiki N. Loaec S. Callebaut C. Guichard G. Muller S. Briand J.P. Hovanessian A.G. AIDS Res. Hum. Retroviruses. 2000; 16: 237-249Crossref PubMed Scopus (23) Google Scholar, 13Nisole S. Said E.A. Mische C. Prevost M.C. Krust B. Bouvet P. Bianco A. Briand J.P. Hovanessian A.G. J. Biol. Chem. 2002; 277: 20877-20886Abstract Full Text Full Text PDF PubMed Scopus (74) Google Scholar). We showed that MK mRNA is systematically expressed in adult peripheral blood lymphocytes from healthy donors, whereas its expression becomes markedly but transiently increased upon in vitro treatment of lymphocytes with interleukin-2 or interferon-γ and activation of T lymphocytes by PHA or antibodies specific to CD3/CD28. In MK-producing lymphocytes, MK is detectable at the cell surface where it colocalizes with the surface-expressed nucleolin. In view of its various growth factor effects (3Kurtz A. Schulte A.M. Wellstein A. Crit. Rev. Oncog. 1995; 6: 151-177PubMed Google Scholar, 4Muramatsu H. Inui T. Kimura T. Sakakibara S. Song X.J. Maruta H. Muramatsu T. Biochem. Biophys. Res. Commun. 1994; 203: 1131-1139Crossref PubMed Scopus (63) Google Scholar) and its enhanced expression in response to physiological agents (10Callebaut C. Nisole S. Briand J.P. Krust B. Hovanessian A.G. Virology. 2001; 281: 248-264Crossref PubMed Scopus (46) Google Scholar), we suggested that MK should be considered as a cytokine. Finally, by using MK-producing CD4+ and CD4− cell clones, we showed that HIV infection in cell cultures could be inhibited both by an autocrine and paracrine manner, thus suggesting that MK is a cytokine that could be implicated in HIV-induced pathogenesis (10Callebaut C. Nisole S. Briand J.P. Krust B. Hovanessian A.G. Virology. 2001; 281: 248-264Crossref PubMed Scopus (46) Google Scholar).MK shares 45% sequence identity with another heparin binding growth-associated factor called pleiotrophin (PTN) (1Muramatsu T. Develop. Growth Differ. 1994; 36: 1-8Crossref Scopus (59) Google Scholar, 3Kurtz A. Schulte A.M. Wellstein A. Crit. Rev. Oncog. 1995; 6: 151-177PubMed Google Scholar). Consequently, MK and PTN constitute a distinct family of heparin binding growth factors that are different from fibroblast growth factors. Despite their striking structural homology and the conservation of their net positive charge, MK and PTN appear to have distinct receptors or receptor complexes. Several candidates have been proposed as the PTN receptor, such as the proteoglycan syndecan-1 and syndecan-3 and, more recently, the anaplastic lymphoma kinase (14Mitsiadis T.A. Salmivirta M. Muramatsu T. Muramatsu H. Rauvala H. Lehtonen E. Jalkanen M. Thesleff I. Development. 1995; 121: 37-51Crossref PubMed Google Scholar, 15Raulo E. Chernousov M.A. Carey D.J. Nolo R. Rauvala H. J. Biol. Chem. 1994; 269: 12999-13004Abstract Full Text PDF PubMed Google Scholar, 16Stoica G.E. Kuo A. Aigner A. Sunitha I. Souttou B. Malerczyk C. Caughey D.J. Wen D. Karavanov A. Riegel A.T. Wellstein A. J. Biol. Chem. 2001; 276: 16772-16779Abstract Full Text Full Text PDF PubMed Scopus (318) Google Scholar). On the other hand, although the binding of MK to heparan sulfate and chondroitin sulfate proteoglycans could be clearly demonstrated using purified and soluble components (17Kurosawa N. Kadomatsu K. Ikematsu S. Sakuma S. Kimura T. Muramatsu T. Eur. J. Biochem. 2000; 267: 344-351Crossref PubMed Scopus (19) Google Scholar, 18Zou K. Muramatsu H. Ikematsu S. Sakuma S. Salama R.H.M. Shinomura T. Timata K. Muramatsu T. Eur. J. Biochem. 2000; 267: 4046-4053Crossref PubMed Scopus (71) Google Scholar), the cell surface receptor for MK is not yet clearly identified. For the purpose of characterizing MK receptor, nucleolin has been isolated by purification of crude cell extracts using an MK affinity matrix column (19Take M. Tsutsui J.-I. Obama H. Ozawa M. Nakayama T. Maruyama I. Arima T. Muramatsu T. J. Biochem. (Tokyo). 1994; 116: 1063-1068Crossref PubMed Scopus (102) Google Scholar). By using a solid-phase binding assay, recently evidence has been provided to show that protein-tyrosine phosphatase ψ binds MK with high affinity (20Maeda N. Ichihara-Tanaka K. Kimura T. Kadomatsu K. Muramatsu T. Masaharu N. J. Biol. Chem. 1999; 274: 12474-12479Abstract Full Text Full Text PDF PubMed Scopus (271) Google Scholar). Other works suggest that the low density lipoprotein receptor-related protein is a component of the high affinity MK receptor (21Muramatsu H. Zou K. Sakaguchi N. Ikematsu S. Sakuma S. Muramatsu T. Biochem. Biophys. Res. Commun. 2000; 270: 936-941Crossref PubMed Scopus (131) Google Scholar). In Wilms' tumor cells, proteins of 75 and 200 kDa have been reported to bind MK with high affinity, but their identity has not yet been determined (22Ratovitski E.A. Burrow C.R. Cell. Mol. Biol. 1997; 43: 425-431PubMed Google Scholar, 23Ratovitski E.A. Kotzbauer P.T. Milbrandt J. Lowenstein C.J. Burrow C.R. J. Biol. Chem. 1998; 263: 3654-3660Abstract Full Text Full Text PDF Scopus (59) Google Scholar). In the case of inhibition of HIV infection, more than 95% inhibition is obtained at concentrations around 0.5 μm MK (10Callebaut C. Nisole S. Briand J.P. Krust B. Hovanessian A.G. Virology. 2001; 281: 248-264Crossref PubMed Scopus (46) Google Scholar), thus pointing out that the anti-HIV action of MK should be exerted via a low affinity receptor.Here we show that MK binding to cells involves high and low affinity binding sites. The nucleolin binding HB-19 pseudopeptide inhibits MK binding to the low affinity receptor, thus suggesting that such a receptor is surface nucleolin. Accordingly, we show that the plasma membrane-anchored MK is colocalized with surface nucleolin. After binding, MK is internalized in a receptor-dependent manner by an active process. MK binding to cells results in the clustering of surface nucleolin, and together they colocalize with specific components of lipid rafts, thus suggesting that MK entry proceeds by the lateral movements of the MK-nucleolin complex into lipid rafts. Accordingly, destruction of membrane cholesterol, which is an essential component for the formation of lipid rafts (24Yancey P.G. Rodrigueza W.V. Kilsdonk E.P. Stoudt G.W. Johnson W.J. Phillips M.C. Rothblat G.H. J. Biol. Chem. 1996; 271: 16026-16034Abstract Full Text Full Text PDF PubMed Scopus (383) Google Scholar), results in MK internalization by a receptor-independent passive process. Midkine (MK)1 has been described as a heparin binding growth factor of 13 kDa that is rich in basic amino acids and cysteines. It has been shown to play a fundamental role in regulation of growth, differentiation, and development. Accordingly, MK expression has been reported to be elevated in embryonic periods, especially in the midgestation stage (1Muramatsu T. Develop. Growth Differ. 1994; 36: 1-8Crossref Scopus (59) Google Scholar, 2Muramatsu H. Shirahama H. Yonezawa S. Maruta H. Muramatsu T. Dev. Biol. 1993; 159: 392-402Crossref PubMed Scopus (233) Google Scholar, 3Kurtz A. Schulte A.M. Wellstein A. Crit. Rev. Oncog. 1995; 6: 151-177PubMed Google Scholar). The functional role of MK has been best demonstrated in the nervous system where MK enhances survival and neurite outgrowth of embryonic neurons and promotes neuronal differentiation (4Muramatsu H. Inui T. Kimura T. Sakakibara S. Song X.J. Maruta H. Muramatsu T. Biochem. Biophys. Res. Commun. 1994; 203: 1131-1139Crossref PubMed Scopus (63) Google Scholar). MK is also known to promote plasminogen activator activity in aortic endothelial cells, leading to increased fibrinolysis (5Kojima S. Inui T. Kimura T. Sakakibara S. Muramatsu H. Amanuma H. Maruta H. Muramatsu T. Biochem. Biophys. Res. Commun. 1995; 206: 468-473Crossref PubMed Scopus (45) Google Scholar). MK mRNA expression is increased in various human carcinomas (6Aridome K. Tsutsui J. Takao S. Kadomatsu K. Ozawa M. Aikou T. Muramatsu T. Jap. J. Cancer Res. 1995; 118: 88-93Google Scholar, 7Tsutsui J.I. Kadomatsu K. Matsubara S. Nakagawara A. Hamanoue M. Takao S. Shimazu H. Ohi Y. Muramatsu T. Cancer Res. 1993; 53: 1281-1285PubMed Google Scholar), and the MK protein has been reported to be required for the growth of the Wilms' tumor cellsin vitro (8Adachi Y. Matsubara S. Pedraza C. Ozawa M. Tsutsui J. Takamatsu H. Noguchi H. Akiyama T. Muramatsu T. Oncogene. 1996; 13: 2197-2203PubMed Google Scholar). Furthermore, MK has been shown to be accumulated in senile plaques of the brain of Alzheimer disease patients (9Yasuhara O. Muramatsu H. Kim S.U. Muramatsu T. Maruta H. McGeer P.L. Biochem. Biophys. Res. Commun. 1993; 192: 246-251Crossref PubMed Scopus (90) Google Scholar). Recently, we reported that synthetic and recombinant preparations of MK inhibit in a dose-dependent manner infection of cells by T lymphocyte- and macrophage-tropic HIV-1 isolates (10Callebaut C. Nisole S. Briand J.P. Krust B. Hovanessian A.G. Virology. 2001; 281: 248-264Crossref PubMed Scopus (46) Google Scholar). The mechanism of inhibition is due to the capacity of MK to bind cells specifically and prevent the attachment of HIV particles to cells. This latter is similar to the mechanism that we had described for the action of the nucleolin binding anti-HIV pseudopeptide HB-19 (11Nisole S. Krust B. Callebaut C. Guichard G. Muller S. Briand J.P. Hovanessian A.G. J. Biol. Chem. 1999; 274: 27875-27884Abstract Full Text Full Text PDF PubMed Scopus (70) Google Scholar, 12Nisole S. Krust B. Dam E. Blanco A. Seddiki N. Loaec S. Callebaut C. Guichard G. Muller S. Briand J.P. Hovanessian A.G. AIDS Res. Hum. Retroviruses. 2000; 16: 237-249Crossref PubMed Scopus (23) Google Scholar, 13Nisole S. Said E.A. Mische C. Prevost M.C. Krust B. Bouvet P. Bianco A. Briand J.P. Hovanessian A.G. J. Biol. Chem. 2002; 277: 20877-20886Abstract Full Text Full Text PDF PubMed Scopus (74) Google Scholar). We showed that MK mRNA is systematically expressed in adult peripheral blood lymphocytes from healthy donors, whereas its expression becomes markedly but transiently increased upon in vitro treatment of lymphocytes with interleukin-2 or interferon-γ and activation of T lymphocytes by PHA or antibodies specific to CD3/CD28. In MK-producing lymphocytes, MK is detectable at the cell surface where it colocalizes with the surface-expressed nucleolin. In view of its various growth factor effects (3Kurtz A. Schulte A.M. Wellstein A. Crit. Rev. Oncog. 1995; 6: 151-177PubMed Google Scholar, 4Muramatsu H. Inui T. Kimura T. Sakakibara S. Song X.J. Maruta H. Muramatsu T. Biochem. Biophys. Res. Commun. 1994; 203: 1131-1139Crossref PubMed Scopus (63) Google Scholar) and its enhanced expression in response to physiological agents (10Callebaut C. Nisole S. Briand J.P. Krust B. Hovanessian A.G. Virology. 2001; 281: 248-264Crossref PubMed Scopus (46) Google Scholar), we suggested that MK should be considered as a cytokine. Finally, by using MK-producing CD4+ and CD4− cell clones, we showed that HIV infection in cell cultures could be inhibited both by an autocrine and paracrine manner, thus suggesting that MK is a cytokine that could be implicated in HIV-induced pathogenesis (10Callebaut C. Nisole S. Briand J.P. Krust B. Hovanessian A.G. Virology. 2001; 281: 248-264Crossref PubMed Scopus (46) Google Scholar). MK shares 45% sequence identity with another heparin binding growth-associated factor called pleiotrophin (PTN) (1Muramatsu T. Develop. Growth Differ. 1994; 36: 1-8Crossref Scopus (59) Google Scholar, 3Kurtz A. Schulte A.M. Wellstein A. Crit. Rev. Oncog. 1995; 6: 151-177PubMed Google Scholar). Consequently, MK and PTN constitute a distinct family of heparin binding growth factors that are different from fibroblast growth factors. Despite their striking structural homology and the conservation of their net positive charge, MK and PTN appear to have distinct receptors or receptor complexes. Several candidates have been proposed as the PTN receptor, such as the proteoglycan syndecan-1 and syndecan-3 and, more recently, the anaplastic lymphoma kinase (14Mitsiadis T.A. Salmivirta M. Muramatsu T. Muramatsu H. Rauvala H. Lehtonen E. Jalkanen M. Thesleff I. Development. 1995; 121: 37-51Crossref PubMed Google Scholar, 15Raulo E. Chernousov M.A. Carey D.J. Nolo R. Rauvala H. J. Biol. Chem. 1994; 269: 12999-13004Abstract Full Text PDF PubMed Google Scholar, 16Stoica G.E. Kuo A. Aigner A. Sunitha I. Souttou B. Malerczyk C. Caughey D.J. Wen D. Karavanov A. Riegel A.T. Wellstein A. J. Biol. Chem. 2001; 276: 16772-16779Abstract Full Text Full Text PDF PubMed Scopus (318) Google Scholar). On the other hand, although the binding of MK to heparan sulfate and chondroitin sulfate proteoglycans could be clearly demonstrated using purified and soluble components (17Kurosawa N. Kadomatsu K. Ikematsu S. Sakuma S. Kimura T. Muramatsu T. Eur. J. Biochem. 2000; 267: 344-351Crossref PubMed Scopus (19) Google Scholar, 18Zou K. Muramatsu H. Ikematsu S. Sakuma S. Salama R.H.M. Shinomura T. Timata K. Muramatsu T. Eur. J. Biochem. 2000; 267: 4046-4053Crossref PubMed Scopus (71) Google Scholar), the cell surface receptor for MK is not yet clearly identified. For the purpose of characterizing MK receptor, nucleolin has been isolated by purification of crude cell extracts using an MK affinity matrix column (19Take M. Tsutsui J.-I. Obama H. Ozawa M. Nakayama T. Maruyama I. Arima T. Muramatsu T. J. Biochem. (Tokyo). 1994; 116: 1063-1068Crossref PubMed Scopus (102) Google Scholar). By using a solid-phase binding assay, recently evidence has been provided to show that protein-tyrosine phosphatase ψ binds MK with high affinity (20Maeda N. Ichihara-Tanaka K. Kimura T. Kadomatsu K. Muramatsu T. Masaharu N. J. Biol. Chem. 1999; 274: 12474-12479Abstract Full Text Full Text PDF PubMed Scopus (271) Google Scholar). Other works suggest that the low density lipoprotein receptor-related protein is a component of the high affinity MK receptor (21Muramatsu H. Zou K. Sakaguchi N. Ikematsu S. Sakuma S. Muramatsu T. Biochem. Biophys. Res. Commun. 2000; 270: 936-941Crossref PubMed Scopus (131) Google Scholar). In Wilms' tumor cells, proteins of 75 and 200 kDa have been reported to bind MK with high affinity, but their identity has not yet been determined (22Ratovitski E.A. Burrow C.R. Cell. Mol. Biol. 1997; 43: 425-431PubMed Google Scholar, 23Ratovitski E.A. Kotzbauer P.T. Milbrandt J. Lowenstein C.J. Burrow C.R. J. Biol. Chem. 1998; 263: 3654-3660Abstract Full Text Full Text PDF Scopus (59) Google Scholar). In the case of inhibition of HIV infection, more than 95% inhibition is obtained at concentrations around 0.5 μm MK (10Callebaut C. Nisole S. Briand J.P. Krust B. Hovanessian A.G. Virology. 2001; 281: 248-264Crossref PubMed Scopus (46) Google Scholar), thus pointing out that the anti-HIV action of MK should be exerted via a low affinity receptor. Here we show that MK binding to cells involves high and low affinity binding sites. The nucleolin binding HB-19 pseudopeptide inhibits MK binding to the low affinity receptor, thus suggesting that such a receptor is surface nucleolin. Accordingly, we show that the plasma membrane-anchored MK is colocalized with surface nucleolin. After binding, MK is internalized in a receptor-dependent manner by an active process. MK binding to cells results in the clustering of surface nucleolin, and together they colocalize with specific components of lipid rafts, thus suggesting that MK entry proceeds by the lateral movements of the MK-nucleolin complex into lipid rafts. Accordingly, destruction of membrane cholesterol, which is an essential component for the formation of lipid rafts (24Yancey P.G. Rodrigueza W.V. Kilsdonk E.P. Stoudt G.W. Johnson W.J. Phillips M.C. Rothblat G.H. J. Biol. Chem. 1996; 271: 16026-16034Abstract Full Text Full Text PDF PubMed Scopus (383) Google Scholar), results in MK internalization by a receptor-independent passive process. The N- and C-terminal domains of MK were generously provided by Dr. T. Muramatsu. We thank Dr. Christian Callebaut for advice and help for the generation of the GST-nucleolin fusion protein in the yeast. We thank Emmanuelle Perret for confocal microscopy." @default.
- W1994364053 created "2016-06-24" @default.
- W1994364053 creator A5011095778 @default.
- W1994364053 creator A5050620583 @default.
- W1994364053 creator A5050912622 @default.
- W1994364053 creator A5054096205 @default.
- W1994364053 creator A5056516116 @default.
- W1994364053 creator A5090509274 @default.
- W1994364053 date "2002-10-01" @default.
- W1994364053 modified "2023-09-27" @default.
- W1994364053 title "The Anti-HIV Cytokine Midkine Binds the Cell Surface-expressed Nucleolin as a Low Affinity Receptor" @default.
- W1994364053 cites W1494846480 @default.
- W1994364053 cites W1509276442 @default.
- W1994364053 cites W1527810981 @default.
- W1994364053 cites W1533516721 @default.
- W1994364053 cites W1582232587 @default.
- W1994364053 cites W1592848557 @default.
- W1994364053 cites W1600687204 @default.
- W1994364053 cites W1700353930 @default.
- W1994364053 cites W1848605842 @default.
- W1994364053 cites W1925850732 @default.
- W1994364053 cites W1936364165 @default.
- W1994364053 cites W1963980598 @default.
- W1994364053 cites W1965207677 @default.
- W1994364053 cites W1972018462 @default.
- W1994364053 cites W1973499183 @default.
- W1994364053 cites W1979898379 @default.
- W1994364053 cites W1990320938 @default.
- W1994364053 cites W1991419403 @default.
- W1994364053 cites W1994190032 @default.
- W1994364053 cites W1995763044 @default.
- W1994364053 cites W1995940860 @default.
- W1994364053 cites W1999958985 @default.
- W1994364053 cites W2000607457 @default.
- W1994364053 cites W2005810531 @default.
- W1994364053 cites W2015607003 @default.
- W1994364053 cites W2015655565 @default.
- W1994364053 cites W2019291050 @default.
- W1994364053 cites W2024933696 @default.
- W1994364053 cites W2028674823 @default.
- W1994364053 cites W2034477126 @default.
- W1994364053 cites W2035761526 @default.
- W1994364053 cites W2045634988 @default.
- W1994364053 cites W2049807989 @default.
- W1994364053 cites W2051073016 @default.
- W1994364053 cites W2056105561 @default.
- W1994364053 cites W2058570720 @default.
- W1994364053 cites W2070122993 @default.
- W1994364053 cites W2073600895 @default.
- W1994364053 cites W2083117240 @default.
- W1994364053 cites W2083626146 @default.
- W1994364053 cites W2083705247 @default.
- W1994364053 cites W2083879735 @default.
- W1994364053 cites W2086056107 @default.
- W1994364053 cites W2090154599 @default.
- W1994364053 cites W2092156970 @default.
- W1994364053 cites W2099593237 @default.
- W1994364053 cites W2099784353 @default.
- W1994364053 cites W2102237910 @default.
- W1994364053 cites W2114045127 @default.
- W1994364053 cites W2115808507 @default.
- W1994364053 cites W2117394497 @default.
- W1994364053 cites W2119075209 @default.
- W1994364053 cites W2121308413 @default.
- W1994364053 cites W2122210884 @default.
- W1994364053 cites W2122225748 @default.
- W1994364053 cites W2124229990 @default.
- W1994364053 cites W2124662703 @default.
- W1994364053 cites W2139846514 @default.
- W1994364053 cites W2150486782 @default.
- W1994364053 cites W2178518459 @default.
- W1994364053 cites W95054676 @default.
- W1994364053 doi "https://doi.org/10.1074/jbc.m201194200" @default.
- W1994364053 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/12147681" @default.
- W1994364053 hasPublicationYear "2002" @default.
- W1994364053 type Work @default.
- W1994364053 sameAs 1994364053 @default.
- W1994364053 citedByCount "122" @default.
- W1994364053 countsByYear W19943640532012 @default.
- W1994364053 countsByYear W19943640532013 @default.
- W1994364053 countsByYear W19943640532014 @default.
- W1994364053 countsByYear W19943640532015 @default.
- W1994364053 countsByYear W19943640532016 @default.
- W1994364053 countsByYear W19943640532017 @default.
- W1994364053 countsByYear W19943640532018 @default.
- W1994364053 countsByYear W19943640532019 @default.
- W1994364053 countsByYear W19943640532020 @default.
- W1994364053 countsByYear W19943640532021 @default.
- W1994364053 countsByYear W19943640532022 @default.
- W1994364053 countsByYear W19943640532023 @default.
- W1994364053 crossrefType "journal-article" @default.
- W1994364053 hasAuthorship W1994364053A5011095778 @default.
- W1994364053 hasAuthorship W1994364053A5050620583 @default.
- W1994364053 hasAuthorship W1994364053A5050912622 @default.
- W1994364053 hasAuthorship W1994364053A5054096205 @default.
- W1994364053 hasAuthorship W1994364053A5056516116 @default.
- W1994364053 hasAuthorship W1994364053A5090509274 @default.
- W1994364053 hasBestOaLocation W19943640531 @default.