Matches in SemOpenAlex for { <https://semopenalex.org/work/W1994454829> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W1994454829 endingPage "M276" @default.
- W1994454829 startingPage "M271" @default.
- W1994454829 abstract "Acoustic signal measurement has been proposed as a noninvasive method of detecting mechanical failure of the implanted total artificial heart. However, differences in acoustic spectra obtained from undamaged and damaged devices may be difficult to distinguish using standard techniques, such as visual inspection or statistical analysis. A new technique, artificial neural network analysis, which has been used successfully on other problems of pattern recognition and classification, was applied to improve the detectability of the acoustic method. Acoustic signals were measured using two different devices in one damaged and one undamaged electrohydraulic total artificial heart, both in a mock circulation set-up and in animal experiments where they were implanted in eight post mortem sheep and the acoustic signal measured using a microphone placed at the skin surface. Spectra of the acoustic waveforms were calculated by discrete Fourier transformation and 400 values (representing the log magnitude in each 2.5 Hz band of the spectrum between 0 and 1 kHz) and used as input to the neural network. A three layer backpropagation neural network containing 400 input nodes, 20 intermediate nodes, and one output node was able to successfully converge with 20 arbitrarily chosen training wave-forms. The trained neural network then perfectly distinguished damaged waveforms from undamaged ones, with good separability. Because the neural network's output can take on a value between two extremes denoting damaged and undamaged states, it is possible to detect any progressive failure at relatively earlier stages. With multiple output node configuration, it could also classify the different types of damage using single acoustic signal waveforms." @default.
- W1994454829 created "2016-06-24" @default.
- W1994454829 creator A5008425144 @default.
- W1994454829 creator A5039006644 @default.
- W1994454829 creator A5048991542 @default.
- W1994454829 creator A5062398453 @default.
- W1994454829 creator A5086659309 @default.
- W1994454829 creator A5089090600 @default.
- W1994454829 date "1995-07-01" @default.
- W1994454829 modified "2023-10-05" @default.
- W1994454829 title "Noninvasive Diagnosis of Mechanical Failure of the Implanted Total Artificial Heart Using Neural Network Analysis of Acoustic Signals" @default.
- W1994454829 doi "https://doi.org/10.1097/00002480-199507000-00010" @default.
- W1994454829 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/8573804" @default.
- W1994454829 hasPublicationYear "1995" @default.
- W1994454829 type Work @default.
- W1994454829 sameAs 1994454829 @default.
- W1994454829 citedByCount "2" @default.
- W1994454829 crossrefType "journal-article" @default.
- W1994454829 hasAuthorship W1994454829A5008425144 @default.
- W1994454829 hasAuthorship W1994454829A5039006644 @default.
- W1994454829 hasAuthorship W1994454829A5048991542 @default.
- W1994454829 hasAuthorship W1994454829A5062398453 @default.
- W1994454829 hasAuthorship W1994454829A5086659309 @default.
- W1994454829 hasAuthorship W1994454829A5089090600 @default.
- W1994454829 hasBestOaLocation W19944548291 @default.
- W1994454829 hasConcept C121332964 @default.
- W1994454829 hasConcept C153180895 @default.
- W1994454829 hasConcept C154945302 @default.
- W1994454829 hasConcept C155032097 @default.
- W1994454829 hasConcept C197424946 @default.
- W1994454829 hasConcept C199360897 @default.
- W1994454829 hasConcept C24890656 @default.
- W1994454829 hasConcept C2778263558 @default.
- W1994454829 hasConcept C2779843651 @default.
- W1994454829 hasConcept C41008148 @default.
- W1994454829 hasConcept C50644808 @default.
- W1994454829 hasConcept C554190296 @default.
- W1994454829 hasConcept C62611344 @default.
- W1994454829 hasConcept C68115822 @default.
- W1994454829 hasConcept C76155785 @default.
- W1994454829 hasConceptScore W1994454829C121332964 @default.
- W1994454829 hasConceptScore W1994454829C153180895 @default.
- W1994454829 hasConceptScore W1994454829C154945302 @default.
- W1994454829 hasConceptScore W1994454829C155032097 @default.
- W1994454829 hasConceptScore W1994454829C197424946 @default.
- W1994454829 hasConceptScore W1994454829C199360897 @default.
- W1994454829 hasConceptScore W1994454829C24890656 @default.
- W1994454829 hasConceptScore W1994454829C2778263558 @default.
- W1994454829 hasConceptScore W1994454829C2779843651 @default.
- W1994454829 hasConceptScore W1994454829C41008148 @default.
- W1994454829 hasConceptScore W1994454829C50644808 @default.
- W1994454829 hasConceptScore W1994454829C554190296 @default.
- W1994454829 hasConceptScore W1994454829C62611344 @default.
- W1994454829 hasConceptScore W1994454829C68115822 @default.
- W1994454829 hasConceptScore W1994454829C76155785 @default.
- W1994454829 hasIssue "3" @default.
- W1994454829 hasLocation W19944548291 @default.
- W1994454829 hasLocation W19944548292 @default.
- W1994454829 hasLocation W19944548293 @default.
- W1994454829 hasOpenAccess W1994454829 @default.
- W1994454829 hasPrimaryLocation W19944548291 @default.
- W1994454829 hasRelatedWork W1982261589 @default.
- W1994454829 hasRelatedWork W2030222682 @default.
- W1994454829 hasRelatedWork W2034702404 @default.
- W1994454829 hasRelatedWork W2111756984 @default.
- W1994454829 hasRelatedWork W2124052353 @default.
- W1994454829 hasRelatedWork W2570425069 @default.
- W1994454829 hasRelatedWork W2591562331 @default.
- W1994454829 hasRelatedWork W2894173309 @default.
- W1994454829 hasRelatedWork W4206400463 @default.
- W1994454829 hasRelatedWork W4238080517 @default.
- W1994454829 hasVolume "41" @default.
- W1994454829 isParatext "false" @default.
- W1994454829 isRetracted "false" @default.
- W1994454829 magId "1994454829" @default.
- W1994454829 workType "article" @default.