Matches in SemOpenAlex for { <https://semopenalex.org/work/W1994598462> ?p ?o ?g. }
- W1994598462 endingPage "162" @default.
- W1994598462 startingPage "147" @default.
- W1994598462 abstract "We consider the problem of estimating a sparse precision matrix of a multivariate Gaussian distribution, where the dimension p may be large. Gaussian graphical models provide an important tool in describing conditional independence through presence or absence of edges in the underlying graph. A popular non-Bayesian method of estimating a graphical structure is given by the graphical lasso. In this paper, we consider a Bayesian approach to the problem. We use priors which put a mixture of a point mass at zero and certain absolutely continuous distribution on off-diagonal elements of the precision matrix. Hence the resulting posterior distribution can be used for graphical structure learning. The posterior convergence rate of the precision matrix is obtained and is shown to match the oracle rate. The posterior distribution on the model space is extremely cumbersome to compute using the commonly used reversible jump Markov chain Monte Carlo methods. However, the posterior mode in each graph can be easily identified as the graphical lasso restricted to each model. We propose a fast computational method for approximating the posterior probabilities of various graphs using the Laplace approximation approach by expanding the posterior density around the posterior mode. We also provide estimates of the accuracy in the approximation." @default.
- W1994598462 created "2016-06-24" @default.
- W1994598462 creator A5011476402 @default.
- W1994598462 creator A5077688271 @default.
- W1994598462 date "2015-04-01" @default.
- W1994598462 modified "2023-10-01" @default.
- W1994598462 title "Bayesian structure learning in graphical models" @default.
- W1994598462 cites W1982652137 @default.
- W1994598462 cites W1989727964 @default.
- W1994598462 cites W1993746015 @default.
- W1994598462 cites W2019963883 @default.
- W1994598462 cites W2033120023 @default.
- W1994598462 cites W2052386156 @default.
- W1994598462 cites W2055841987 @default.
- W1994598462 cites W2056324615 @default.
- W1994598462 cites W2057535756 @default.
- W1994598462 cites W2062125287 @default.
- W1994598462 cites W2062532221 @default.
- W1994598462 cites W2074360197 @default.
- W1994598462 cites W2081746825 @default.
- W1994598462 cites W2098916533 @default.
- W1994598462 cites W2112814716 @default.
- W1994598462 cites W2125432874 @default.
- W1994598462 cites W2129084324 @default.
- W1994598462 cites W2132555912 @default.
- W1994598462 cites W2147426468 @default.
- W1994598462 cites W2163707651 @default.
- W1994598462 cites W3098045107 @default.
- W1994598462 cites W3098365576 @default.
- W1994598462 cites W3098834468 @default.
- W1994598462 cites W3098880893 @default.
- W1994598462 cites W3099609308 @default.
- W1994598462 cites W3101788651 @default.
- W1994598462 cites W3103699839 @default.
- W1994598462 cites W3103757612 @default.
- W1994598462 cites W3106284700 @default.
- W1994598462 cites W3106319742 @default.
- W1994598462 doi "https://doi.org/10.1016/j.jmva.2015.01.015" @default.
- W1994598462 hasPublicationYear "2015" @default.
- W1994598462 type Work @default.
- W1994598462 sameAs 1994598462 @default.
- W1994598462 citedByCount "68" @default.
- W1994598462 countsByYear W19945984622015 @default.
- W1994598462 countsByYear W19945984622016 @default.
- W1994598462 countsByYear W19945984622017 @default.
- W1994598462 countsByYear W19945984622018 @default.
- W1994598462 countsByYear W19945984622019 @default.
- W1994598462 countsByYear W19945984622020 @default.
- W1994598462 countsByYear W19945984622021 @default.
- W1994598462 countsByYear W19945984622022 @default.
- W1994598462 countsByYear W19945984622023 @default.
- W1994598462 crossrefType "journal-article" @default.
- W1994598462 hasAuthorship W1994598462A5011476402 @default.
- W1994598462 hasAuthorship W1994598462A5077688271 @default.
- W1994598462 hasConcept C105795698 @default.
- W1994598462 hasConcept C107673813 @default.
- W1994598462 hasConcept C111350023 @default.
- W1994598462 hasConcept C11413529 @default.
- W1994598462 hasConcept C121332964 @default.
- W1994598462 hasConcept C136764020 @default.
- W1994598462 hasConcept C155846161 @default.
- W1994598462 hasConcept C163716315 @default.
- W1994598462 hasConcept C177769412 @default.
- W1994598462 hasConcept C28826006 @default.
- W1994598462 hasConcept C33923547 @default.
- W1994598462 hasConcept C37616216 @default.
- W1994598462 hasConcept C41008148 @default.
- W1994598462 hasConcept C57830394 @default.
- W1994598462 hasConcept C62520636 @default.
- W1994598462 hasConceptScore W1994598462C105795698 @default.
- W1994598462 hasConceptScore W1994598462C107673813 @default.
- W1994598462 hasConceptScore W1994598462C111350023 @default.
- W1994598462 hasConceptScore W1994598462C11413529 @default.
- W1994598462 hasConceptScore W1994598462C121332964 @default.
- W1994598462 hasConceptScore W1994598462C136764020 @default.
- W1994598462 hasConceptScore W1994598462C155846161 @default.
- W1994598462 hasConceptScore W1994598462C163716315 @default.
- W1994598462 hasConceptScore W1994598462C177769412 @default.
- W1994598462 hasConceptScore W1994598462C28826006 @default.
- W1994598462 hasConceptScore W1994598462C33923547 @default.
- W1994598462 hasConceptScore W1994598462C37616216 @default.
- W1994598462 hasConceptScore W1994598462C41008148 @default.
- W1994598462 hasConceptScore W1994598462C57830394 @default.
- W1994598462 hasConceptScore W1994598462C62520636 @default.
- W1994598462 hasLocation W19945984621 @default.
- W1994598462 hasOpenAccess W1994598462 @default.
- W1994598462 hasPrimaryLocation W19945984621 @default.
- W1994598462 hasRelatedWork W2028239557 @default.
- W1994598462 hasRelatedWork W2257391503 @default.
- W1994598462 hasRelatedWork W2804912909 @default.
- W1994598462 hasRelatedWork W2920989603 @default.
- W1994598462 hasRelatedWork W3117628444 @default.
- W1994598462 hasRelatedWork W3149385462 @default.
- W1994598462 hasRelatedWork W3204476393 @default.
- W1994598462 hasRelatedWork W4297109390 @default.
- W1994598462 hasRelatedWork W4381573658 @default.
- W1994598462 hasRelatedWork W4384648042 @default.
- W1994598462 hasVolume "136" @default.