Matches in SemOpenAlex for { <https://semopenalex.org/work/W1994643710> ?p ?o ?g. }
- W1994643710 endingPage "280" @default.
- W1994643710 startingPage "262" @default.
- W1994643710 abstract "Antifreeze proteins are characterised by their ability to prevent ice from growing upon cooling below the bulk melting point. This displacement of the freezing temperature of ice is limited and at a sufficiently low temperature a rapid ice growth takes place. The separation of the melting and freezing temperature is usually referred to as thermal hysteresis, and the temperature of ice growth is referred to as the hysteresis freezing point. The hysteresis is supposed to be the result of an adsorption of antifreeze proteins to the crystal surface. This causes the ice to grow as convex surface regions between adjacent adsorbed antifreeze proteins, thus lowering the temperature at which the crystal can visibly expand. The model requires that the antifreeze proteins are irreversibly adsorbed onto the ice surface within the hysteresis gap. This presupposition is apparently in conflict with several characteristic features of the phenomenon; the absence of superheating of ice in the presence of antifreeze proteins, the dependence of the hysteresis activity on the concentration of antifreeze proteins and the different capacities of different types of antifreeze proteins to cause thermal hysteresis at equimolar concentrations. In addition, there are structural obstacles that apparently would preclude irreversible adsorption of the antifreeze proteins to the ice surface; the bond strength necessary for irreversible adsorption and the absence of a clearly defined surface to which the antifreeze proteins may adsorb. This article deals with these apparent conflicts between the prevailing theory and the empirical observations. We first review the mechanism of thermal hysteresis with some modifications: we explain the hysteresis as a result of vapour pressure equilibrium between the ice surface and the ambient fluid fraction within the hysteresis gap due to a pressure build-up within the convex growth zones, and the ice growth as the result of an ice surface nucleation event at the hysteresis freezing point. We then go on to summarise the empirical data to show that the dependence of the hysteresis on the concentration of antifreeze proteins arises from an equilibrium exchange of antifreeze proteins between ice and solution at the melting point. This reversible association between antifreeze proteins and the ice is followed by an irreversible adsorption of the antifreeze proteins onto a newly formed crystal plane when the temperature is lowered below the melting point. The formation of the crystal plane is due to a solidification of the interfacial region, and the necessary bond strength is provided by the protein freezing to the surface. In essence: the antifreeze proteins are melted off the ice at the bulk melting point and freeze to the ice as the temperature is reduced to subfreezing temperatures. We explain the different hysteresis activities caused by different types of antifreeze proteins at equimolar concentrations as a consequence of their solubility features during the phase of reversible association between the proteins and the ice, i.e., at the melting point; a low water solubility results in a large fraction of the proteins being associated with the ice at the melting point. This leads to a greater density of irreversibly adsorbed antifreeze proteins at the ice surface when the temperature drops, and thus to a greater hysteresis activity. Reference is also made to observations on insect antifreeze proteins to emphasise the general validity of this approach." @default.
- W1994643710 created "2016-06-24" @default.
- W1994643710 creator A5046296299 @default.
- W1994643710 creator A5084369895 @default.
- W1994643710 date "2005-12-01" @default.
- W1994643710 modified "2023-10-17" @default.
- W1994643710 title "The mechanism by which fish antifreeze proteins cause thermal hysteresis" @default.
- W1994643710 cites W1588996416 @default.
- W1994643710 cites W1620085426 @default.
- W1994643710 cites W1877147113 @default.
- W1994643710 cites W1964859388 @default.
- W1994643710 cites W1965052752 @default.
- W1994643710 cites W1965636138 @default.
- W1994643710 cites W1970928969 @default.
- W1994643710 cites W1972574735 @default.
- W1994643710 cites W1979275471 @default.
- W1994643710 cites W1985034464 @default.
- W1994643710 cites W1987856093 @default.
- W1994643710 cites W1994592594 @default.
- W1994643710 cites W2006958318 @default.
- W1994643710 cites W2007167222 @default.
- W1994643710 cites W2008943604 @default.
- W1994643710 cites W2012708621 @default.
- W1994643710 cites W2014059139 @default.
- W1994643710 cites W2017169936 @default.
- W1994643710 cites W2017289925 @default.
- W1994643710 cites W2020838198 @default.
- W1994643710 cites W2021382151 @default.
- W1994643710 cites W2025840593 @default.
- W1994643710 cites W2029291154 @default.
- W1994643710 cites W2035308951 @default.
- W1994643710 cites W2037083949 @default.
- W1994643710 cites W2039263636 @default.
- W1994643710 cites W2041235400 @default.
- W1994643710 cites W2042545194 @default.
- W1994643710 cites W2042937945 @default.
- W1994643710 cites W2045173681 @default.
- W1994643710 cites W2045888807 @default.
- W1994643710 cites W2049091666 @default.
- W1994643710 cites W2051019070 @default.
- W1994643710 cites W2051272652 @default.
- W1994643710 cites W2051406946 @default.
- W1994643710 cites W2055748333 @default.
- W1994643710 cites W2059505200 @default.
- W1994643710 cites W2063385774 @default.
- W1994643710 cites W2064235624 @default.
- W1994643710 cites W2068802394 @default.
- W1994643710 cites W2071239596 @default.
- W1994643710 cites W2074255695 @default.
- W1994643710 cites W2077110244 @default.
- W1994643710 cites W2078403442 @default.
- W1994643710 cites W2081259911 @default.
- W1994643710 cites W2081846590 @default.
- W1994643710 cites W2083397422 @default.
- W1994643710 cites W2087168305 @default.
- W1994643710 cites W2088793989 @default.
- W1994643710 cites W2089848022 @default.
- W1994643710 cites W2095854371 @default.
- W1994643710 cites W2095864746 @default.
- W1994643710 cites W2097814171 @default.
- W1994643710 cites W2109851377 @default.
- W1994643710 cites W2119850183 @default.
- W1994643710 cites W2122642279 @default.
- W1994643710 cites W2135930798 @default.
- W1994643710 cites W2148378265 @default.
- W1994643710 cites W2149464700 @default.
- W1994643710 cites W2149568849 @default.
- W1994643710 cites W2149928611 @default.
- W1994643710 cites W2156397505 @default.
- W1994643710 cites W2158637334 @default.
- W1994643710 cites W2162530632 @default.
- W1994643710 cites W2199144780 @default.
- W1994643710 cites W2252622833 @default.
- W1994643710 cites W4233720054 @default.
- W1994643710 cites W4238685313 @default.
- W1994643710 doi "https://doi.org/10.1016/j.cryobiol.2005.07.007" @default.
- W1994643710 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16140290" @default.
- W1994643710 hasPublicationYear "2005" @default.
- W1994643710 type Work @default.
- W1994643710 sameAs 1994643710 @default.
- W1994643710 citedByCount "183" @default.
- W1994643710 countsByYear W19946437102012 @default.
- W1994643710 countsByYear W19946437102013 @default.
- W1994643710 countsByYear W19946437102014 @default.
- W1994643710 countsByYear W19946437102015 @default.
- W1994643710 countsByYear W19946437102016 @default.
- W1994643710 countsByYear W19946437102017 @default.
- W1994643710 countsByYear W19946437102018 @default.
- W1994643710 countsByYear W19946437102019 @default.
- W1994643710 countsByYear W19946437102020 @default.
- W1994643710 countsByYear W19946437102021 @default.
- W1994643710 countsByYear W19946437102022 @default.
- W1994643710 countsByYear W19946437102023 @default.
- W1994643710 crossrefType "journal-article" @default.
- W1994643710 hasAuthorship W1994643710A5046296299 @default.
- W1994643710 hasAuthorship W1994643710A5084369895 @default.
- W1994643710 hasConcept C112964491 @default.
- W1994643710 hasConcept C121332964 @default.