Matches in SemOpenAlex for { <https://semopenalex.org/work/W1994756823> ?p ?o ?g. }
- W1994756823 endingPage "27096" @default.
- W1994756823 startingPage "27091" @default.
- W1994756823 abstract "Osteoprotegerin (OPG)/osteoclastogenesis inhibitory factor (OCIF) is a recently identified cytokine that belongs to the tumor necrosis factor receptor superfamily and regulates bone mass by inhibiting osteoclastic bone resorption. The present study was undertaken to determine whether OPG/OCIF is produced in bone microenvironment and how the expression is regulated. A transcript for OPG/OCIF at 3.1 kilobases was detected in bone marrow stromal cells (ST2 and MC3T3-G2/PA6) as well as in osteoblastic cells (MC3T3-E1). Transforming growth factor-β1 (TGF-β1) markedly increased the steady-state level of OPG/OCIF mRNA in a dose-dependent manner, while TGF-β1 suppressed the mRNA expression of tumor necrosis factor-related activation-induced cytokine (TRANCE)/receptor activator of NF-κB ligand (RANKL), a positive regulator of osteoclastogenesis to which OPG/OCIF binds.The effect of TGF-β1 on the expression of OPG/OCIF mRNA was transient, with a peak level at 3–6 h. The up-regulation of OPG/OCIF mRNA by TGF-β1 in ST2 cells did not require de novoprotein synthesis and involved both a transcriptional and a post-transcriptional mechanism. Western blot analysis and an enzyme-linked immunosorbent assay revealed that TGF-β1 significantly increased the secretion of OPG/OCIF protein by ST2 cells at 6–24 h. In murine bone marrow cultures, TGF-β1 markedly inhibited the formation of tartrate-resistant acid phosphatase-positive multinucleated osteoclast-like cells in the presence of 1,25-dihydroxyvitamin D3, whose effect was significantly reversed by a neutralizing antibody against OPG/OCIF.These results suggest that TGF-β1 negatively regulates osteoclastogenesis, at least in part, through the induction of OPG/OCIF by bone marrow stromal cells and that the balance between OPG/OCIF and TRANCE/RANKL in local environment may be an important determinant of osteoclastic bone resorption. Osteoprotegerin (OPG)/osteoclastogenesis inhibitory factor (OCIF) is a recently identified cytokine that belongs to the tumor necrosis factor receptor superfamily and regulates bone mass by inhibiting osteoclastic bone resorption. The present study was undertaken to determine whether OPG/OCIF is produced in bone microenvironment and how the expression is regulated. A transcript for OPG/OCIF at 3.1 kilobases was detected in bone marrow stromal cells (ST2 and MC3T3-G2/PA6) as well as in osteoblastic cells (MC3T3-E1). Transforming growth factor-β1 (TGF-β1) markedly increased the steady-state level of OPG/OCIF mRNA in a dose-dependent manner, while TGF-β1 suppressed the mRNA expression of tumor necrosis factor-related activation-induced cytokine (TRANCE)/receptor activator of NF-κB ligand (RANKL), a positive regulator of osteoclastogenesis to which OPG/OCIF binds. The effect of TGF-β1 on the expression of OPG/OCIF mRNA was transient, with a peak level at 3–6 h. The up-regulation of OPG/OCIF mRNA by TGF-β1 in ST2 cells did not require de novoprotein synthesis and involved both a transcriptional and a post-transcriptional mechanism. Western blot analysis and an enzyme-linked immunosorbent assay revealed that TGF-β1 significantly increased the secretion of OPG/OCIF protein by ST2 cells at 6–24 h. In murine bone marrow cultures, TGF-β1 markedly inhibited the formation of tartrate-resistant acid phosphatase-positive multinucleated osteoclast-like cells in the presence of 1,25-dihydroxyvitamin D3, whose effect was significantly reversed by a neutralizing antibody against OPG/OCIF. These results suggest that TGF-β1 negatively regulates osteoclastogenesis, at least in part, through the induction of OPG/OCIF by bone marrow stromal cells and that the balance between OPG/OCIF and TRANCE/RANKL in local environment may be an important determinant of osteoclastic bone resorption. tumor necrosis factor osteoprotegerin osteoclastogenesis inhibitory factor transforming growth factor-β1 25(OH)2D3, 1α,25-dihydroxyvitamin D3 cycloheximide 5,6-dichloro-1-β-d-ribofuranosylbenzimidazol polymerase chain reaction tumor necrosis factor-related activation-induced cytokine receptor activator of NF-κB ligand elongation factor 1 α enzyme-linked immunosorbent assay. Osteoclasts are multinucleated, giant cells that are primarily responsible for bone resorption (1Roodman G.D. Endocr. Rev. 1996; 17: 308-332PubMed Google Scholar, 2Suda T. Nakamura I. Jimi E. Takahashi N. J. Bone Miner. Res. 1997; 12: 869-879Crossref PubMed Scopus (336) Google Scholar). In normal bone remodeling cycles, osteoclastic bone resorption is followed by osteoblastic bone formation to continuously replace old bone with new bone. These two processes are temporally and spatially coordinated to maintain the skeletal integrity, and excessive bone resorption, typically seen in association with estrogen deficiency after menopause, causes osteoporosis (3Manolagas S.C. Jilka R.L. N. Engl. J. Med. 1995; 332: 305-311Crossref PubMed Scopus (1559) Google Scholar, 4Pacifici R. J. Bone Miner. Res. 1996; 11: 1043-1051Crossref PubMed Scopus (616) Google Scholar).It is generally accepted that osteoclasts are hematopoietic in origin and derived from cells of monocyte-macrophage lineage (1Roodman G.D. Endocr. Rev. 1996; 17: 308-332PubMed Google Scholar, 2Suda T. Nakamura I. Jimi E. Takahashi N. J. Bone Miner. Res. 1997; 12: 869-879Crossref PubMed Scopus (336) Google Scholar). In addition, accumulating evidence suggests an important role of the bone marrow microenvironment, especially bone marrow stromal cells, in the regulation of osteoclast formation and bone resorption by mature osteoclasts (1Roodman G.D. Endocr. Rev. 1996; 17: 308-332PubMed Google Scholar, 2Suda T. Nakamura I. Jimi E. Takahashi N. J. Bone Miner. Res. 1997; 12: 869-879Crossref PubMed Scopus (336) Google Scholar). Recent gene knockout experiments and genetic analysis of osteopetrotic animals have disclosed the involvement of various molecules in the formation and the function of osteoclasts, including PU.1 (5Tondravi M.M. McKercher S.R. Anderson K. Erdmann J.M. Quiroz M. Maki R. Teitelbaum S.L. Nature. 1997; 386: 81-84Crossref PubMed Scopus (446) Google Scholar), macrophage-colony stimulating factor (6Yoshida H. Hayashi S. Kunisada T. Ogawa M. Nishikawa S. Okamura H. Sudo T. Shultz L.D. Nishikawa S. Nature. 1990; 345: 442-444Crossref PubMed Scopus (1506) Google Scholar), c-Fos (7Grigoriadis A.E. Wang Z.-Q. Cecchini M.G. Hofstetter W. Felix R. Fleisch H.A. Wagner E.F. Science. 1994; 266: 443-448Crossref PubMed Scopus (1061) Google Scholar), NF-κB (8Iotsova V. Caamaño J. Loy J. Yang Y. Lewin A. Bravo R. Nature Med. 1997; 3: 1285-1289Crossref PubMed Scopus (872) Google Scholar, 9Franzoso G. Carlson L. Xing L. Poljak L. Shores E.W. Brown K.D. Leonardi A. Tran T. Boyce B.F. Siebenlist U. Genes Dev. 1997; 11: 3482-3496Crossref PubMed Scopus (860) Google Scholar), c-Src (10Soriano P. Montgomery C. Geske R. Bradley A. Cell. 1991; 64: 693-702Abstract Full Text PDF PubMed Scopus (1792) Google Scholar), and cathepsin-K (11Gelb B.D. Shi G.-P. Chapman H.A. Desnick R.J. Science. 1996; 273: 1236-1238Crossref PubMed Scopus (849) Google Scholar). However, complex, multistep processes of osteoclastogenesis and cross-talks between osteoclast progenitors and bone marrow microenvironment have not been fully understood (1Roodman G.D. Endocr. Rev. 1996; 17: 308-332PubMed Google Scholar, 2Suda T. Nakamura I. Jimi E. Takahashi N. J. Bone Miner. Res. 1997; 12: 869-879Crossref PubMed Scopus (336) Google Scholar).Simonet et al. (12Shimonet W.S. Lacey D.L. Dunstan C.R. Kelley M. Chang M.-S. Lüthy R. Nguyen H.Q. Wooden S. Bennett L. Boone T. Shimamoto G. DeRose M. Elliott R. Colombero A. Tan H.-L. Trail G. Sullivan J. Davy E. Bucay N. Renshaw-Gegg L. Hughes T.M. Hill D. Pattison W. Campbell P. Sander S. Van G. Tarpley J. Derby P. Lee R. Amgen EST Program Boyle W.J. Cell. 1997; 89: 309-319Abstract Full Text Full Text PDF PubMed Scopus (4297) Google Scholar) have recently identified a novel member of the tumor necrosis factor (TNF)1 receptor superfamily, termed osteoprotegerin (OPG), that regulates bone mass through an inhibitory effect on osteoclastogenesis. Independently, we have purified from the conditioned medium of human embryonic lung fibroblasts (IMR-90) a cytokine, termed osteoclastogenesis inhibitory factor (OCIF), which inhibits the formation of osteoclasts in vitro (13Tsuda E. Goto M. Mochizuki S. Yano K. Kobayashi F. Morinaga T. Higashio K. Biochem. Biophys. Res. Commun. 1997; 234: 137-142Crossref PubMed Scopus (726) Google Scholar). Molecular cloning of human OCIF revealed that OCIF and OPG are identical (14Yasuda H. Shima N. Nakagawa N. Mochizuki S. Yano K. Fujise N. Sato Y. Goto M. Yamaguchi K. Kuriyama M. Kanno T. Murakami A. Tsuda E. Morinaga T. Higashio K. Endocrinology. 1998; 139: 1329-1337Crossref PubMed Scopus (965) Google Scholar). 2We therefore refer to this cytokine as OPG/OCIF in this paper.2We therefore refer to this cytokine as OPG/OCIF in this paper.Although it is evident that OPG/OCIF is expressed in a wide variety of tissues and inhibits bone resorption in vivo as well asin vitro (12Shimonet W.S. Lacey D.L. Dunstan C.R. Kelley M. Chang M.-S. Lüthy R. Nguyen H.Q. Wooden S. Bennett L. Boone T. Shimamoto G. DeRose M. Elliott R. Colombero A. Tan H.-L. Trail G. Sullivan J. Davy E. Bucay N. Renshaw-Gegg L. Hughes T.M. Hill D. Pattison W. Campbell P. Sander S. Van G. Tarpley J. Derby P. Lee R. Amgen EST Program Boyle W.J. Cell. 1997; 89: 309-319Abstract Full Text Full Text PDF PubMed Scopus (4297) Google Scholar, 13Tsuda E. Goto M. Mochizuki S. Yano K. Kobayashi F. Morinaga T. Higashio K. Biochem. Biophys. Res. Commun. 1997; 234: 137-142Crossref PubMed Scopus (726) Google Scholar, 14Yasuda H. Shima N. Nakagawa N. Mochizuki S. Yano K. Fujise N. Sato Y. Goto M. Yamaguchi K. Kuriyama M. Kanno T. Murakami A. Tsuda E. Morinaga T. Higashio K. Endocrinology. 1998; 139: 1329-1337Crossref PubMed Scopus (965) Google Scholar), it remains unclear which cell types in the bone marrow microenvironment produce OPG/OCIF, how the expression is regulated, and how it acts in the process of osteoclastogenesis. In order to approach these important issues, we have now studied the expression of the OPG/OCIF gene and its regulation in several bone- and bone marrow-derived cell lines. The results indicate that the expression of the OPG/OCIF gene is markedly induced by transforming growth factor-β1 (TGF-β1) in osteoclastogenesis-supporting stromal cells, through both a transcriptional and a post-transcriptional mechanism, and that locally produced OPG/OCIF plays a functional role in the negative feedback regulation of osteoclastic bone resorption. Osteoclasts are multinucleated, giant cells that are primarily responsible for bone resorption (1Roodman G.D. Endocr. Rev. 1996; 17: 308-332PubMed Google Scholar, 2Suda T. Nakamura I. Jimi E. Takahashi N. J. Bone Miner. Res. 1997; 12: 869-879Crossref PubMed Scopus (336) Google Scholar). In normal bone remodeling cycles, osteoclastic bone resorption is followed by osteoblastic bone formation to continuously replace old bone with new bone. These two processes are temporally and spatially coordinated to maintain the skeletal integrity, and excessive bone resorption, typically seen in association with estrogen deficiency after menopause, causes osteoporosis (3Manolagas S.C. Jilka R.L. N. Engl. J. Med. 1995; 332: 305-311Crossref PubMed Scopus (1559) Google Scholar, 4Pacifici R. J. Bone Miner. Res. 1996; 11: 1043-1051Crossref PubMed Scopus (616) Google Scholar). It is generally accepted that osteoclasts are hematopoietic in origin and derived from cells of monocyte-macrophage lineage (1Roodman G.D. Endocr. Rev. 1996; 17: 308-332PubMed Google Scholar, 2Suda T. Nakamura I. Jimi E. Takahashi N. J. Bone Miner. Res. 1997; 12: 869-879Crossref PubMed Scopus (336) Google Scholar). In addition, accumulating evidence suggests an important role of the bone marrow microenvironment, especially bone marrow stromal cells, in the regulation of osteoclast formation and bone resorption by mature osteoclasts (1Roodman G.D. Endocr. Rev. 1996; 17: 308-332PubMed Google Scholar, 2Suda T. Nakamura I. Jimi E. Takahashi N. J. Bone Miner. Res. 1997; 12: 869-879Crossref PubMed Scopus (336) Google Scholar). Recent gene knockout experiments and genetic analysis of osteopetrotic animals have disclosed the involvement of various molecules in the formation and the function of osteoclasts, including PU.1 (5Tondravi M.M. McKercher S.R. Anderson K. Erdmann J.M. Quiroz M. Maki R. Teitelbaum S.L. Nature. 1997; 386: 81-84Crossref PubMed Scopus (446) Google Scholar), macrophage-colony stimulating factor (6Yoshida H. Hayashi S. Kunisada T. Ogawa M. Nishikawa S. Okamura H. Sudo T. Shultz L.D. Nishikawa S. Nature. 1990; 345: 442-444Crossref PubMed Scopus (1506) Google Scholar), c-Fos (7Grigoriadis A.E. Wang Z.-Q. Cecchini M.G. Hofstetter W. Felix R. Fleisch H.A. Wagner E.F. Science. 1994; 266: 443-448Crossref PubMed Scopus (1061) Google Scholar), NF-κB (8Iotsova V. Caamaño J. Loy J. Yang Y. Lewin A. Bravo R. Nature Med. 1997; 3: 1285-1289Crossref PubMed Scopus (872) Google Scholar, 9Franzoso G. Carlson L. Xing L. Poljak L. Shores E.W. Brown K.D. Leonardi A. Tran T. Boyce B.F. Siebenlist U. Genes Dev. 1997; 11: 3482-3496Crossref PubMed Scopus (860) Google Scholar), c-Src (10Soriano P. Montgomery C. Geske R. Bradley A. Cell. 1991; 64: 693-702Abstract Full Text PDF PubMed Scopus (1792) Google Scholar), and cathepsin-K (11Gelb B.D. Shi G.-P. Chapman H.A. Desnick R.J. Science. 1996; 273: 1236-1238Crossref PubMed Scopus (849) Google Scholar). However, complex, multistep processes of osteoclastogenesis and cross-talks between osteoclast progenitors and bone marrow microenvironment have not been fully understood (1Roodman G.D. Endocr. Rev. 1996; 17: 308-332PubMed Google Scholar, 2Suda T. Nakamura I. Jimi E. Takahashi N. J. Bone Miner. Res. 1997; 12: 869-879Crossref PubMed Scopus (336) Google Scholar). Simonet et al. (12Shimonet W.S. Lacey D.L. Dunstan C.R. Kelley M. Chang M.-S. Lüthy R. Nguyen H.Q. Wooden S. Bennett L. Boone T. Shimamoto G. DeRose M. Elliott R. Colombero A. Tan H.-L. Trail G. Sullivan J. Davy E. Bucay N. Renshaw-Gegg L. Hughes T.M. Hill D. Pattison W. Campbell P. Sander S. Van G. Tarpley J. Derby P. Lee R. Amgen EST Program Boyle W.J. Cell. 1997; 89: 309-319Abstract Full Text Full Text PDF PubMed Scopus (4297) Google Scholar) have recently identified a novel member of the tumor necrosis factor (TNF)1 receptor superfamily, termed osteoprotegerin (OPG), that regulates bone mass through an inhibitory effect on osteoclastogenesis. Independently, we have purified from the conditioned medium of human embryonic lung fibroblasts (IMR-90) a cytokine, termed osteoclastogenesis inhibitory factor (OCIF), which inhibits the formation of osteoclasts in vitro (13Tsuda E. Goto M. Mochizuki S. Yano K. Kobayashi F. Morinaga T. Higashio K. Biochem. Biophys. Res. Commun. 1997; 234: 137-142Crossref PubMed Scopus (726) Google Scholar). Molecular cloning of human OCIF revealed that OCIF and OPG are identical (14Yasuda H. Shima N. Nakagawa N. Mochizuki S. Yano K. Fujise N. Sato Y. Goto M. Yamaguchi K. Kuriyama M. Kanno T. Murakami A. Tsuda E. Morinaga T. Higashio K. Endocrinology. 1998; 139: 1329-1337Crossref PubMed Scopus (965) Google Scholar). 2We therefore refer to this cytokine as OPG/OCIF in this paper.2We therefore refer to this cytokine as OPG/OCIF in this paper.Although it is evident that OPG/OCIF is expressed in a wide variety of tissues and inhibits bone resorption in vivo as well asin vitro (12Shimonet W.S. Lacey D.L. Dunstan C.R. Kelley M. Chang M.-S. Lüthy R. Nguyen H.Q. Wooden S. Bennett L. Boone T. Shimamoto G. DeRose M. Elliott R. Colombero A. Tan H.-L. Trail G. Sullivan J. Davy E. Bucay N. Renshaw-Gegg L. Hughes T.M. Hill D. Pattison W. Campbell P. Sander S. Van G. Tarpley J. Derby P. Lee R. Amgen EST Program Boyle W.J. Cell. 1997; 89: 309-319Abstract Full Text Full Text PDF PubMed Scopus (4297) Google Scholar, 13Tsuda E. Goto M. Mochizuki S. Yano K. Kobayashi F. Morinaga T. Higashio K. Biochem. Biophys. Res. Commun. 1997; 234: 137-142Crossref PubMed Scopus (726) Google Scholar, 14Yasuda H. Shima N. Nakagawa N. Mochizuki S. Yano K. Fujise N. Sato Y. Goto M. Yamaguchi K. Kuriyama M. Kanno T. Murakami A. Tsuda E. Morinaga T. Higashio K. Endocrinology. 1998; 139: 1329-1337Crossref PubMed Scopus (965) Google Scholar), it remains unclear which cell types in the bone marrow microenvironment produce OPG/OCIF, how the expression is regulated, and how it acts in the process of osteoclastogenesis. In order to approach these important issues, we have now studied the expression of the OPG/OCIF gene and its regulation in several bone- and bone marrow-derived cell lines. The results indicate that the expression of the OPG/OCIF gene is markedly induced by transforming growth factor-β1 (TGF-β1) in osteoclastogenesis-supporting stromal cells, through both a transcriptional and a post-transcriptional mechanism, and that locally produced OPG/OCIF plays a functional role in the negative feedback regulation of osteoclastic bone resorption." @default.
- W1994756823 created "2016-06-24" @default.
- W1994756823 creator A5014351400 @default.
- W1994756823 creator A5024427492 @default.
- W1994756823 creator A5028242375 @default.
- W1994756823 creator A5030867912 @default.
- W1994756823 creator A5034363803 @default.
- W1994756823 creator A5071367814 @default.
- W1994756823 creator A5073988192 @default.
- W1994756823 creator A5079650511 @default.
- W1994756823 date "1998-10-01" @default.
- W1994756823 modified "2023-10-14" @default.
- W1994756823 title "Transforming Growth Factor-β Stimulates the Production of Osteoprotegerin/Osteoclastogenesis Inhibitory Factor by Bone Marrow Stromal Cells" @default.
- W1994756823 cites W146857095 @default.
- W1994756823 cites W1650001464 @default.
- W1994756823 cites W1922993929 @default.
- W1994756823 cites W1971470705 @default.
- W1994756823 cites W1977553486 @default.
- W1994756823 cites W1992407302 @default.
- W1994756823 cites W1993064864 @default.
- W1994756823 cites W2000170431 @default.
- W1994756823 cites W2000647744 @default.
- W1994756823 cites W2006536230 @default.
- W1994756823 cites W2041138285 @default.
- W1994756823 cites W2043651158 @default.
- W1994756823 cites W2043992170 @default.
- W1994756823 cites W2048299560 @default.
- W1994756823 cites W2049293744 @default.
- W1994756823 cites W2050547572 @default.
- W1994756823 cites W2058616210 @default.
- W1994756823 cites W2059059445 @default.
- W1994756823 cites W2062026488 @default.
- W1994756823 cites W2063073616 @default.
- W1994756823 cites W2063676540 @default.
- W1994756823 cites W2066024775 @default.
- W1994756823 cites W2066574904 @default.
- W1994756823 cites W2070470162 @default.
- W1994756823 cites W2079076173 @default.
- W1994756823 cites W2084152511 @default.
- W1994756823 cites W2088047697 @default.
- W1994756823 cites W2097757541 @default.
- W1994756823 cites W2110993073 @default.
- W1994756823 cites W2111019735 @default.
- W1994756823 cites W2139996507 @default.
- W1994756823 cites W2140657644 @default.
- W1994756823 cites W2167886526 @default.
- W1994756823 cites W2321505964 @default.
- W1994756823 cites W4294216491 @default.
- W1994756823 doi "https://doi.org/10.1074/jbc.273.42.27091" @default.
- W1994756823 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9765225" @default.
- W1994756823 hasPublicationYear "1998" @default.
- W1994756823 type Work @default.
- W1994756823 sameAs 1994756823 @default.
- W1994756823 citedByCount "289" @default.
- W1994756823 countsByYear W19947568232012 @default.
- W1994756823 countsByYear W19947568232013 @default.
- W1994756823 countsByYear W19947568232014 @default.
- W1994756823 countsByYear W19947568232015 @default.
- W1994756823 countsByYear W19947568232016 @default.
- W1994756823 countsByYear W19947568232017 @default.
- W1994756823 countsByYear W19947568232018 @default.
- W1994756823 countsByYear W19947568232019 @default.
- W1994756823 countsByYear W19947568232020 @default.
- W1994756823 countsByYear W19947568232021 @default.
- W1994756823 countsByYear W19947568232022 @default.
- W1994756823 countsByYear W19947568232023 @default.
- W1994756823 crossrefType "journal-article" @default.
- W1994756823 hasAuthorship W1994756823A5014351400 @default.
- W1994756823 hasAuthorship W1994756823A5024427492 @default.
- W1994756823 hasAuthorship W1994756823A5028242375 @default.
- W1994756823 hasAuthorship W1994756823A5030867912 @default.
- W1994756823 hasAuthorship W1994756823A5034363803 @default.
- W1994756823 hasAuthorship W1994756823A5071367814 @default.
- W1994756823 hasAuthorship W1994756823A5073988192 @default.
- W1994756823 hasAuthorship W1994756823A5079650511 @default.
- W1994756823 hasBestOaLocation W19947568231 @default.
- W1994756823 hasConcept C118131993 @default.
- W1994756823 hasConcept C126322002 @default.
- W1994756823 hasConcept C134018914 @default.
- W1994756823 hasConcept C16930146 @default.
- W1994756823 hasConcept C170493617 @default.
- W1994756823 hasConcept C17077164 @default.
- W1994756823 hasConcept C185592680 @default.
- W1994756823 hasConcept C2775960820 @default.
- W1994756823 hasConcept C2780007613 @default.
- W1994756823 hasConcept C2780426850 @default.
- W1994756823 hasConcept C502942594 @default.
- W1994756823 hasConcept C71924100 @default.
- W1994756823 hasConcept C86803240 @default.
- W1994756823 hasConcept C88045685 @default.
- W1994756823 hasConcept C95444343 @default.
- W1994756823 hasConceptScore W1994756823C118131993 @default.
- W1994756823 hasConceptScore W1994756823C126322002 @default.
- W1994756823 hasConceptScore W1994756823C134018914 @default.
- W1994756823 hasConceptScore W1994756823C16930146 @default.
- W1994756823 hasConceptScore W1994756823C170493617 @default.
- W1994756823 hasConceptScore W1994756823C17077164 @default.
- W1994756823 hasConceptScore W1994756823C185592680 @default.