Matches in SemOpenAlex for { <https://semopenalex.org/work/W1994833963> ?p ?o ?g. }
- W1994833963 endingPage "9513" @default.
- W1994833963 startingPage "9484" @default.
- W1994833963 abstract "Bayesian model selection or averaging objectively ranks a number of plausible, competing conceptual models based on Bayes' theorem. It implicitly performs an optimal trade-off between performance in fitting available data and minimum model complexity. The procedure requires determining Bayesian model evidence (BME), which is the likelihood of the observed data integrated over each model's parameter space. The computation of this integral is highly challenging because it is as high-dimensional as the number of model parameters. Three classes of techniques to compute BME are available, each with its own challenges and limitations: (1) Exact and fast analytical solutions are limited by strong assumptions. (2) Numerical evaluation quickly becomes unfeasible for expensive models. (3) Approximations known as information criteria (ICs) such as the AIC, BIC, or KIC (Akaike, Bayesian, or Kashyap information criterion, respectively) yield contradicting results with regard to model ranking. Our study features a theory-based intercomparison of these techniques. We further assess their accuracy in a simplistic synthetic example where for some scenarios an exact analytical solution exists. In more challenging scenarios, we use a brute-force Monte Carlo integration method as reference. We continue this analysis with a real-world application of hydrological model selection. This is a first-time benchmarking of the various methods for BME evaluation against true solutions. Results show that BME values from ICs are often heavily biased and that the choice of approximation method substantially influences the accuracy of model ranking. For reliable model selection, bias-free numerical methods should be preferred over ICs whenever computationally feasible." @default.
- W1994833963 created "2016-06-24" @default.
- W1994833963 creator A5044674668 @default.
- W1994833963 creator A5079024483 @default.
- W1994833963 creator A5084795321 @default.
- W1994833963 creator A5091354130 @default.
- W1994833963 date "2014-12-01" @default.
- W1994833963 modified "2023-10-16" @default.
- W1994833963 title "Model selection on solid ground: Rigorous comparison of nine ways to evaluate <scp>B</scp> ayesian model evidence" @default.
- W1994833963 cites W1483053213 @default.
- W1994833963 cites W1527594523 @default.
- W1994833963 cites W1529206345 @default.
- W1994833963 cites W1537396274 @default.
- W1994833963 cites W1538040041 @default.
- W1994833963 cites W1539229456 @default.
- W1994833963 cites W1564996581 @default.
- W1994833963 cites W1594170481 @default.
- W1994833963 cites W1598813349 @default.
- W1994833963 cites W1603903339 @default.
- W1994833963 cites W1604615177 @default.
- W1994833963 cites W1631618898 @default.
- W1994833963 cites W1713296299 @default.
- W1994833963 cites W1881486198 @default.
- W1994833963 cites W1916457060 @default.
- W1994833963 cites W1927341307 @default.
- W1994833963 cites W1932382878 @default.
- W1994833963 cites W1965563786 @default.
- W1994833963 cites W1968637865 @default.
- W1994833963 cites W1968646712 @default.
- W1994833963 cites W1979636769 @default.
- W1994833963 cites W1984038448 @default.
- W1994833963 cites W1984138429 @default.
- W1994833963 cites W1988446510 @default.
- W1994833963 cites W1990119892 @default.
- W1994833963 cites W1994672023 @default.
- W1994833963 cites W2012735889 @default.
- W1994833963 cites W2025442346 @default.
- W1994833963 cites W2033904036 @default.
- W1994833963 cites W2040287813 @default.
- W1994833963 cites W2042553494 @default.
- W1994833963 cites W2046759075 @default.
- W1994833963 cites W2048305092 @default.
- W1994833963 cites W2061079066 @default.
- W1994833963 cites W2066944697 @default.
- W1994833963 cites W2076118331 @default.
- W1994833963 cites W2084840427 @default.
- W1994833963 cites W2089719636 @default.
- W1994833963 cites W2089763487 @default.
- W1994833963 cites W2094595478 @default.
- W1994833963 cites W2099074881 @default.
- W1994833963 cites W2100337656 @default.
- W1994833963 cites W2103714425 @default.
- W1994833963 cites W2109844396 @default.
- W1994833963 cites W2112021406 @default.
- W1994833963 cites W2117897510 @default.
- W1994833963 cites W2124738823 @default.
- W1994833963 cites W2124741347 @default.
- W1994833963 cites W2133209872 @default.
- W1994833963 cites W2142635246 @default.
- W1994833963 cites W2144272685 @default.
- W1994833963 cites W2146495904 @default.
- W1994833963 cites W2148534890 @default.
- W1994833963 cites W2155844565 @default.
- W1994833963 cites W2157184412 @default.
- W1994833963 cites W2158196600 @default.
- W1994833963 cites W2158840489 @default.
- W1994833963 cites W2161781691 @default.
- W1994833963 cites W2168175751 @default.
- W1994833963 cites W2170396766 @default.
- W1994833963 cites W2248735392 @default.
- W1994833963 cites W2519923421 @default.
- W1994833963 cites W2911546748 @default.
- W1994833963 cites W2921430350 @default.
- W1994833963 cites W3203931103 @default.
- W1994833963 cites W4235256018 @default.
- W1994833963 cites W4246464108 @default.
- W1994833963 cites W4250280011 @default.
- W1994833963 cites W4251288685 @default.
- W1994833963 cites W4255056999 @default.
- W1994833963 cites W4255582690 @default.
- W1994833963 cites W4361852026 @default.
- W1994833963 doi "https://doi.org/10.1002/2014wr016062" @default.
- W1994833963 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4328146" @default.
- W1994833963 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25745272" @default.
- W1994833963 hasPublicationYear "2014" @default.
- W1994833963 type Work @default.
- W1994833963 sameAs 1994833963 @default.
- W1994833963 citedByCount "109" @default.
- W1994833963 countsByYear W19948339632015 @default.
- W1994833963 countsByYear W19948339632016 @default.
- W1994833963 countsByYear W19948339632017 @default.
- W1994833963 countsByYear W19948339632018 @default.
- W1994833963 countsByYear W19948339632019 @default.
- W1994833963 countsByYear W19948339632020 @default.
- W1994833963 countsByYear W19948339632021 @default.
- W1994833963 countsByYear W19948339632022 @default.
- W1994833963 countsByYear W19948339632023 @default.
- W1994833963 crossrefType "journal-article" @default.