Matches in SemOpenAlex for { <https://semopenalex.org/work/W1994920552> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W1994920552 endingPage "149" @default.
- W1994920552 startingPage "117" @default.
- W1994920552 abstract "We propose and analyze a distribution learning algorithm for variable memory length Markov processes. These processes can be described by a subclass of probabilistic finite automata which we name Probabilistic Suffix Automata (PSA). Though hardness results are known for learning distributions generated by general probabilistic automata, we prove that the algorithm we present can efficiently learn distributions generated by PSAs. In particular, we show that for any target PSA, the KL-divergence between the distribution generated by the target and the distribution generated by the hypothesis the learning algorithm outputs, can be made small with high confidence in polynomial time and sample complexity. The learning algorithm is motivated by applications in human-machine interaction. Here we present two applications of the algorithm. In the first one we apply the algorithm in order to construct a model of the English language, and use this model to correct corrupted text. In the second application we construct a simple stochastic model for E.coli DNA." @default.
- W1994920552 created "2016-06-24" @default.
- W1994920552 creator A5004273274 @default.
- W1994920552 creator A5050591232 @default.
- W1994920552 creator A5063746987 @default.
- W1994920552 date "1997-01-01" @default.
- W1994920552 modified "2023-09-30" @default.
- W1994920552 title "The power of amnesia: Learning probabilistic automata with variable memory length" @default.
- W1994920552 cites W1984783785 @default.
- W1994920552 cites W2014544984 @default.
- W1994920552 cites W2035227369 @default.
- W1994920552 cites W2045291344 @default.
- W1994920552 cites W2069092471 @default.
- W1994920552 cites W2079145130 @default.
- W1994920552 cites W2081281113 @default.
- W1994920552 cites W2082967074 @default.
- W1994920552 cites W2086699924 @default.
- W1994920552 cites W2095374884 @default.
- W1994920552 cites W2095546965 @default.
- W1994920552 cites W2099111195 @default.
- W1994920552 cites W2111094262 @default.
- W1994920552 cites W2116190532 @default.
- W1994920552 cites W2122962290 @default.
- W1994920552 cites W2125838338 @default.
- W1994920552 cites W2140802988 @default.
- W1994920552 cites W2146104665 @default.
- W1994920552 cites W2148381206 @default.
- W1994920552 cites W2159782014 @default.
- W1994920552 cites W2185924078 @default.
- W1994920552 doi "https://doi.org/10.1007/bf00114008" @default.
- W1994920552 hasPublicationYear "1997" @default.
- W1994920552 type Work @default.
- W1994920552 sameAs 1994920552 @default.
- W1994920552 citedByCount "292" @default.
- W1994920552 countsByYear W19949205522012 @default.
- W1994920552 countsByYear W19949205522013 @default.
- W1994920552 countsByYear W19949205522014 @default.
- W1994920552 countsByYear W19949205522015 @default.
- W1994920552 countsByYear W19949205522016 @default.
- W1994920552 countsByYear W19949205522017 @default.
- W1994920552 countsByYear W19949205522018 @default.
- W1994920552 countsByYear W19949205522019 @default.
- W1994920552 countsByYear W19949205522020 @default.
- W1994920552 countsByYear W19949205522021 @default.
- W1994920552 countsByYear W19949205522022 @default.
- W1994920552 crossrefType "journal-article" @default.
- W1994920552 hasAuthorship W1994920552A5004273274 @default.
- W1994920552 hasAuthorship W1994920552A5050591232 @default.
- W1994920552 hasAuthorship W1994920552A5063746987 @default.
- W1994920552 hasBestOaLocation W19949205521 @default.
- W1994920552 hasConcept C112505250 @default.
- W1994920552 hasConcept C11413529 @default.
- W1994920552 hasConcept C116248031 @default.
- W1994920552 hasConcept C119857082 @default.
- W1994920552 hasConcept C154945302 @default.
- W1994920552 hasConcept C174327141 @default.
- W1994920552 hasConcept C174784677 @default.
- W1994920552 hasConcept C311688 @default.
- W1994920552 hasConcept C41008148 @default.
- W1994920552 hasConcept C49937458 @default.
- W1994920552 hasConcept C80444323 @default.
- W1994920552 hasConcept C98763669 @default.
- W1994920552 hasConceptScore W1994920552C112505250 @default.
- W1994920552 hasConceptScore W1994920552C11413529 @default.
- W1994920552 hasConceptScore W1994920552C116248031 @default.
- W1994920552 hasConceptScore W1994920552C119857082 @default.
- W1994920552 hasConceptScore W1994920552C154945302 @default.
- W1994920552 hasConceptScore W1994920552C174327141 @default.
- W1994920552 hasConceptScore W1994920552C174784677 @default.
- W1994920552 hasConceptScore W1994920552C311688 @default.
- W1994920552 hasConceptScore W1994920552C41008148 @default.
- W1994920552 hasConceptScore W1994920552C49937458 @default.
- W1994920552 hasConceptScore W1994920552C80444323 @default.
- W1994920552 hasConceptScore W1994920552C98763669 @default.
- W1994920552 hasIssue "2-3" @default.
- W1994920552 hasLocation W19949205521 @default.
- W1994920552 hasOpenAccess W1994920552 @default.
- W1994920552 hasPrimaryLocation W19949205521 @default.
- W1994920552 hasRelatedWork W1780789845 @default.
- W1994920552 hasRelatedWork W189312714 @default.
- W1994920552 hasRelatedWork W1979390054 @default.
- W1994920552 hasRelatedWork W2035364689 @default.
- W1994920552 hasRelatedWork W2044753318 @default.
- W1994920552 hasRelatedWork W2100326215 @default.
- W1994920552 hasRelatedWork W2159449605 @default.
- W1994920552 hasRelatedWork W2514822958 @default.
- W1994920552 hasRelatedWork W2951456305 @default.
- W1994920552 hasRelatedWork W4244879671 @default.
- W1994920552 hasVolume "25" @default.
- W1994920552 isParatext "false" @default.
- W1994920552 isRetracted "false" @default.
- W1994920552 magId "1994920552" @default.
- W1994920552 workType "article" @default.