Matches in SemOpenAlex for { <https://semopenalex.org/work/W1995052921> ?p ?o ?g. }
- W1995052921 endingPage "777" @default.
- W1995052921 startingPage "769" @default.
- W1995052921 abstract "Solvated electrons, and hydrated electrons in particular, are important species in condensed phase chemistry, physics, and biology. Many studies have examined the formation mechanism, reactivity, spectroscopy, and dynamics of electrons in aqueous solution and other solvents, leading to a fundamental understanding of the electron−solvent interaction. However, key aspects of solvated electrons remain controversial, and the interaction between hydrated electrons and water is of central interest. For example, although researchers generally accept that hydrated electrons, eaq−, occupy solvent cavities, another picture suggests that the electron resides in a diffuse orbital localized on a H3O radical. In addition, researchers have proposed two physically distinct models for the relaxation mechanism when the electron is excited. These models, formulated to interpret condensed phase experiments, have markedly different time scales for the internal conversion from the excited p state to the ground s state. Studies of negatively charged clusters, such as (H2O)n− and I−(H2O)n, offer a complementary perspective for studying aqueous electron solvation. In this Account, we use time-resolved photoelectron spectroscopy (TRPES), a femtosecond pump−probe technique in which mass-selected anions are electronically excited and then photodetached at a series of delay times, to focus on time-resolved dynamics in these and similar species. In (H2O)n−, TRPES gives evidence for ultrafast internal conversion in clusters up to n = 100. Extrapolation of these results yields a p-state lifetime of 50 fs in the bulk limit. This is in good agreement with the nonadiabatic solvation model, one of the models proposed for relaxation of eaq−. Similarly, experiments on (MeOH)n− up to n = 450 give an extrapolated p-state lifetime of 150 fs. TRPES investigations of I−(H2O)n and I−(CH3CN)n probe a different aspect of electron solvation dynamics. In these experiments, an ultraviolet pump pulse excites the cluster analog of the charge-transfer-to-solvent (CTTS) band, ejecting an electron from the iodide into the solvent network. The probe pulse then monitors the solvent response to this excess electron, specifically its stabilization via solvent rearrangement. In I−(H2O)n, the iodide sits outside the solvent network, as does the excess electron initially formed by CTTS excitation. However, the iodide in I−(CH3CN)n is internally solvated, and both experimental and theoretical evidence indicate that electrons in (CH3CN)n− are internally solvated. Hence, these experiments reflect the complex dynamics that ensue when the electron is photodetached within a highly confined solvent cavity." @default.
- W1995052921 created "2016-06-24" @default.
- W1995052921 creator A5005884690 @default.
- W1995052921 creator A5064483795 @default.
- W1995052921 date "2009-04-10" @default.
- W1995052921 modified "2023-10-17" @default.
- W1995052921 title "Dynamics of Electron Solvation in Molecular Clusters" @default.
- W1995052921 cites W1643119151 @default.
- W1995052921 cites W1964464437 @default.
- W1995052921 cites W1964752287 @default.
- W1995052921 cites W1973257472 @default.
- W1995052921 cites W1977887853 @default.
- W1995052921 cites W1979672107 @default.
- W1995052921 cites W1986518796 @default.
- W1995052921 cites W1987324807 @default.
- W1995052921 cites W1988797087 @default.
- W1995052921 cites W1989265693 @default.
- W1995052921 cites W1989605014 @default.
- W1995052921 cites W1991186608 @default.
- W1995052921 cites W1994470089 @default.
- W1995052921 cites W2000485602 @default.
- W1995052921 cites W2003644198 @default.
- W1995052921 cites W2003731269 @default.
- W1995052921 cites W2005569086 @default.
- W1995052921 cites W2005749087 @default.
- W1995052921 cites W2011796905 @default.
- W1995052921 cites W2012574672 @default.
- W1995052921 cites W2014063669 @default.
- W1995052921 cites W2031132031 @default.
- W1995052921 cites W2031582657 @default.
- W1995052921 cites W2034432800 @default.
- W1995052921 cites W2034571534 @default.
- W1995052921 cites W2034752401 @default.
- W1995052921 cites W2041533428 @default.
- W1995052921 cites W2046510065 @default.
- W1995052921 cites W2055451373 @default.
- W1995052921 cites W2055521656 @default.
- W1995052921 cites W2058373851 @default.
- W1995052921 cites W2059383983 @default.
- W1995052921 cites W2061166453 @default.
- W1995052921 cites W2064970061 @default.
- W1995052921 cites W2066078855 @default.
- W1995052921 cites W2071277646 @default.
- W1995052921 cites W2073176614 @default.
- W1995052921 cites W2074535838 @default.
- W1995052921 cites W2074669662 @default.
- W1995052921 cites W2075938211 @default.
- W1995052921 cites W2082690803 @default.
- W1995052921 cites W2087660788 @default.
- W1995052921 cites W2088907809 @default.
- W1995052921 cites W2089699052 @default.
- W1995052921 cites W2093006445 @default.
- W1995052921 cites W2093902496 @default.
- W1995052921 cites W2098680229 @default.
- W1995052921 cites W2113124936 @default.
- W1995052921 cites W2118175325 @default.
- W1995052921 cites W2127727822 @default.
- W1995052921 cites W2145640410 @default.
- W1995052921 cites W2150754022 @default.
- W1995052921 cites W2151767184 @default.
- W1995052921 cites W2166603911 @default.
- W1995052921 cites W2950875980 @default.
- W1995052921 cites W2950960607 @default.
- W1995052921 doi "https://doi.org/10.1021/ar800263z" @default.
- W1995052921 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19361211" @default.
- W1995052921 hasPublicationYear "2009" @default.
- W1995052921 type Work @default.
- W1995052921 sameAs 1995052921 @default.
- W1995052921 citedByCount "74" @default.
- W1995052921 countsByYear W19950529212012 @default.
- W1995052921 countsByYear W19950529212013 @default.
- W1995052921 countsByYear W19950529212014 @default.
- W1995052921 countsByYear W19950529212015 @default.
- W1995052921 countsByYear W19950529212016 @default.
- W1995052921 countsByYear W19950529212017 @default.
- W1995052921 countsByYear W19950529212018 @default.
- W1995052921 countsByYear W19950529212019 @default.
- W1995052921 countsByYear W19950529212020 @default.
- W1995052921 countsByYear W19950529212021 @default.
- W1995052921 countsByYear W19950529212022 @default.
- W1995052921 countsByYear W19950529212023 @default.
- W1995052921 crossrefType "journal-article" @default.
- W1995052921 hasAuthorship W1995052921A5005884690 @default.
- W1995052921 hasAuthorship W1995052921A5064483795 @default.
- W1995052921 hasBestOaLocation W19950529212 @default.
- W1995052921 hasConcept C116039458 @default.
- W1995052921 hasConcept C121332964 @default.
- W1995052921 hasConcept C147120987 @default.
- W1995052921 hasConcept C147789679 @default.
- W1995052921 hasConcept C148093993 @default.
- W1995052921 hasConcept C149823470 @default.
- W1995052921 hasConcept C15744967 @default.
- W1995052921 hasConcept C159467904 @default.
- W1995052921 hasConcept C178790620 @default.
- W1995052921 hasConcept C181500209 @default.
- W1995052921 hasConcept C184651966 @default.
- W1995052921 hasConcept C184779094 @default.
- W1995052921 hasConcept C185592680 @default.