Matches in SemOpenAlex for { <https://semopenalex.org/work/W1995098081> ?p ?o ?g. }
- W1995098081 endingPage "3591" @default.
- W1995098081 startingPage "3583" @default.
- W1995098081 abstract "System identification is an emerging field of structural engineering which plays a key role in structures of great importance such as concrete gravity dams. In this study, an artificial neural network (ANN) procedure is proposed for the identification of concrete gravity dams, in conjunction with a hybrid finite element–boundary element (FE–BE) analysis for the prediction of dynamic characteristics of an existing concrete gravity dam with an empty reservoir. First, a dam–reservoir interaction analysis is carried out by the hybrid FE–BE approach in the frequency domain. A two-dimensional (2D) FE model (FEM) is used for linear-elastic analysis of the gravity dam on a rigid foundation, while the unbounded reservoir with inviscid, compressible, and frictionless fluid is discretized by BEs. Various analyses are performed for different height to base width ratios of dams in terms of different wave reflection coefficient of the reservoir bottom. The use of ANNs is motivated by the approximate concepts inherent in system identification approaches, and the time-consuming repeated analyses required for dam–reservoir interacting systems. The conjugate gradient algorithm (CGA) and the Levenberg–Marquardt algorithm (LMA) are implemented for training the ANNs, using available data generated from the results of coupled dam–reservoir system analyses. The trained ANNs are then employed to compute the dynamic amplification of dam crest displacement and natural frequencies of existing concrete gravity dams through forced vibration tests. The results obtained by solving the present inverse problem are compared with existing FEM solutions to demonstrate the accuracy and efficiency of the proposed method." @default.
- W1995098081 created "2016-06-24" @default.
- W1995098081 creator A5005830134 @default.
- W1995098081 creator A5035229667 @default.
- W1995098081 creator A5038101740 @default.
- W1995098081 creator A5049271042 @default.
- W1995098081 date "2010-11-01" @default.
- W1995098081 modified "2023-10-18" @default.
- W1995098081 title "System identification of concrete gravity dams using artificial neural networks based on a hybrid finite element–boundary element approach" @default.
- W1995098081 cites W1976001629 @default.
- W1995098081 cites W1978593705 @default.
- W1995098081 cites W1981743838 @default.
- W1995098081 cites W1988871900 @default.
- W1995098081 cites W1992756230 @default.
- W1995098081 cites W1997192814 @default.
- W1995098081 cites W1998594647 @default.
- W1995098081 cites W2003537417 @default.
- W1995098081 cites W2003791375 @default.
- W1995098081 cites W2005526654 @default.
- W1995098081 cites W2006005267 @default.
- W1995098081 cites W2008404467 @default.
- W1995098081 cites W2008448036 @default.
- W1995098081 cites W2012436378 @default.
- W1995098081 cites W2020846142 @default.
- W1995098081 cites W2025200809 @default.
- W1995098081 cites W2027459999 @default.
- W1995098081 cites W2028818480 @default.
- W1995098081 cites W2032500000 @default.
- W1995098081 cites W2035715451 @default.
- W1995098081 cites W2039765600 @default.
- W1995098081 cites W2045601566 @default.
- W1995098081 cites W2048796786 @default.
- W1995098081 cites W2056615106 @default.
- W1995098081 cites W2062364183 @default.
- W1995098081 cites W2070714843 @default.
- W1995098081 cites W2075885267 @default.
- W1995098081 cites W2076763021 @default.
- W1995098081 cites W2079208087 @default.
- W1995098081 cites W2080192898 @default.
- W1995098081 cites W2080930841 @default.
- W1995098081 cites W2085337961 @default.
- W1995098081 cites W2086952579 @default.
- W1995098081 cites W2087119090 @default.
- W1995098081 cites W2093154396 @default.
- W1995098081 cites W2115021113 @default.
- W1995098081 cites W2115613817 @default.
- W1995098081 cites W2149851995 @default.
- W1995098081 cites W2155753079 @default.
- W1995098081 doi "https://doi.org/10.1016/j.engstruct.2010.08.002" @default.
- W1995098081 hasPublicationYear "2010" @default.
- W1995098081 type Work @default.
- W1995098081 sameAs 1995098081 @default.
- W1995098081 citedByCount "61" @default.
- W1995098081 countsByYear W19950980812012 @default.
- W1995098081 countsByYear W19950980812013 @default.
- W1995098081 countsByYear W19950980812014 @default.
- W1995098081 countsByYear W19950980812015 @default.
- W1995098081 countsByYear W19950980812016 @default.
- W1995098081 countsByYear W19950980812017 @default.
- W1995098081 countsByYear W19950980812018 @default.
- W1995098081 countsByYear W19950980812019 @default.
- W1995098081 countsByYear W19950980812020 @default.
- W1995098081 countsByYear W19950980812021 @default.
- W1995098081 countsByYear W19950980812022 @default.
- W1995098081 countsByYear W19950980812023 @default.
- W1995098081 crossrefType "journal-article" @default.
- W1995098081 hasAuthorship W1995098081A5005830134 @default.
- W1995098081 hasAuthorship W1995098081A5035229667 @default.
- W1995098081 hasAuthorship W1995098081A5038101740 @default.
- W1995098081 hasAuthorship W1995098081A5049271042 @default.
- W1995098081 hasConcept C115903868 @default.
- W1995098081 hasConcept C119247159 @default.
- W1995098081 hasConcept C119857082 @default.
- W1995098081 hasConcept C121332964 @default.
- W1995098081 hasConcept C127313418 @default.
- W1995098081 hasConcept C127413603 @default.
- W1995098081 hasConcept C134306372 @default.
- W1995098081 hasConcept C135252773 @default.
- W1995098081 hasConcept C135628077 @default.
- W1995098081 hasConcept C182310444 @default.
- W1995098081 hasConcept C187320778 @default.
- W1995098081 hasConcept C198394728 @default.
- W1995098081 hasConcept C2776423418 @default.
- W1995098081 hasConcept C2779318173 @default.
- W1995098081 hasConcept C33923547 @default.
- W1995098081 hasConcept C41008148 @default.
- W1995098081 hasConcept C50644808 @default.
- W1995098081 hasConcept C62354387 @default.
- W1995098081 hasConcept C62520636 @default.
- W1995098081 hasConcept C66938386 @default.
- W1995098081 hasConcept C67186912 @default.
- W1995098081 hasConceptScore W1995098081C115903868 @default.
- W1995098081 hasConceptScore W1995098081C119247159 @default.
- W1995098081 hasConceptScore W1995098081C119857082 @default.
- W1995098081 hasConceptScore W1995098081C121332964 @default.
- W1995098081 hasConceptScore W1995098081C127313418 @default.
- W1995098081 hasConceptScore W1995098081C127413603 @default.
- W1995098081 hasConceptScore W1995098081C134306372 @default.