Matches in SemOpenAlex for { <https://semopenalex.org/work/W1995187041> ?p ?o ?g. }
- W1995187041 endingPage "1361" @default.
- W1995187041 startingPage "1349" @default.
- W1995187041 abstract "The Jinchuan intrusion hosts one of the largest magmatic Ni-Cu sulfide deposits in the world. Net-textured and disseminated pyrrhotite, pentlandite, and chalcopyrite are found in olivine-rich rocks (60–80 vol %) that occur as a northwest-southeast–striking dike. Olivine in the intrusion has been variably converted to mixtures of serpentine and fine-grained magnetite. Interstitial pyroxene and minor plagioclase have been altered to mixtures of chlorite, amphibole, epidote, clinozoisite, Na-rich feldspar, and lesser amounts of calcite. Although the interstitial net texture of sulfide minerals surrounding olivine grains is preserved, up to 30 vol percent of sulfide minerals are replaced by magnetite, serpentine, and chlorite. An external origin for Mg and Si needed for the isovolumetric replacement of sulfides cannot be discounted, but a local origin related to olivine and pyroxene alteration is favored. Serpentine and chlorite may be enriched in Cu and Ni, but the enrichment can account for less than 1 percent of the metals lost during the replacement of sulfide minerals by silicates and oxides. Some of the metals and sulfur that were removed from the net-textured sulfide assemblages have been redeposited on a centimeter scale in fine ribbons and veins within serpentine, chlorite, and amphibole. Sulfur isotope values of the pyrrhotite-pentlandite-chalcopyrite assemblage at Jinchuan fall in the range of −2 to 8 per mil, with over 80 percent of the values between −2 and 2 per mil. Immediate country rocks in the Jinchuan area are Precambrian granitoids, schists, and marbles with sulfur concentrations less than 100 ppm. Although the δ 34 S values of the main sulfide assemblage at Jinchuan are in the range that is characteristic of mantle-derived sulfur, assimilation of sulfur from unexposed country rocks cannot yet be discounted. Secondary pyrite occurs in veins and stringers, and rarely as a replacement of pyrrhotite, and is characterized by δ 34 S values between −7 and −27 per mil. The strongly negative δ 34 S values of secondary pyrite are thought to be a result of oxidation of primary magmatic sulfide assemblages and partial reduction of aqueous sulfate. Oxygen and hydrogen isotope values of silicate minerals suggest that at least two fluids have been involved in the hydrothermal alteration at Jinchuan. The δ 18 O values of plagioclase, amphibole, and serpentine all suggest the involvement of a fluid with a δ 18 O value between ~2 and 5 per mil at 300° to 400°C. The δD values of amphibole and one population of serpentine suggest a δD value for the fluid in the range of −45 to −63 per mil. These values are consistent with the involvement of evolved seawater or a metamorphic fluid in the early stages of alteration. The possible involvement of evolved seawater in hydrothermal alteration is consistent with a rift setting for the emplacement of the Jinchuan intrusion. However, the wide range in serpentine δD values (computed δD of the fluid = −45 to −103‰) suggest either that serpentinization involved a mixture of evolved seawater and/or metamorphic water and meteoric water or, more likely, that serpentine continued to exchange hydrogen isotopes with late-stage meteoric waters after it formed." @default.
- W1995187041 created "2016-06-24" @default.
- W1995187041 creator A5007563534 @default.
- W1995187041 creator A5014742790 @default.
- W1995187041 creator A5060933989 @default.
- W1995187041 date "2005-11-01" @default.
- W1995187041 modified "2023-09-30" @default.
- W1995187041 title "Mineralogic and Stable Isotope Studies of Hydrothermal Alteration at the Jinchuan Ni-Cu Deposit, China" @default.
- W1995187041 cites W1207354341 @default.
- W1995187041 cites W1830824796 @default.
- W1995187041 cites W1967419716 @default.
- W1995187041 cites W1970194030 @default.
- W1995187041 cites W1987275845 @default.
- W1995187041 cites W1990581568 @default.
- W1995187041 cites W1991608935 @default.
- W1995187041 cites W1996361224 @default.
- W1995187041 cites W2022980556 @default.
- W1995187041 cites W2034058675 @default.
- W1995187041 cites W2055875329 @default.
- W1995187041 cites W2068202901 @default.
- W1995187041 cites W2068699789 @default.
- W1995187041 cites W2069243531 @default.
- W1995187041 cites W2075408083 @default.
- W1995187041 cites W2081618807 @default.
- W1995187041 cites W2084463468 @default.
- W1995187041 cites W2088516428 @default.
- W1995187041 cites W2090782858 @default.
- W1995187041 cites W2094371738 @default.
- W1995187041 cites W2111968610 @default.
- W1995187041 cites W2121606802 @default.
- W1995187041 cites W2129004166 @default.
- W1995187041 cites W2140881241 @default.
- W1995187041 cites W2147817906 @default.
- W1995187041 cites W2148957284 @default.
- W1995187041 cites W2165206006 @default.
- W1995187041 cites W2315023265 @default.
- W1995187041 cites W2315199463 @default.
- W1995187041 cites W2317660510 @default.
- W1995187041 cites W2319425498 @default.
- W1995187041 cites W2332760329 @default.
- W1995187041 cites W2345192953 @default.
- W1995187041 cites W2408261671 @default.
- W1995187041 cites W2415795567 @default.
- W1995187041 cites W2461799892 @default.
- W1995187041 cites W2511549435 @default.
- W1995187041 cites W2563464250 @default.
- W1995187041 cites W2585681986 @default.
- W1995187041 cites W2587206660 @default.
- W1995187041 cites W2601228342 @default.
- W1995187041 cites W3120303909 @default.
- W1995187041 cites W599106992 @default.
- W1995187041 cites W638753518 @default.
- W1995187041 doi "https://doi.org/10.2113/gsecongeo.100.7.1349" @default.
- W1995187041 hasPublicationYear "2005" @default.
- W1995187041 type Work @default.
- W1995187041 sameAs 1995187041 @default.
- W1995187041 citedByCount "67" @default.
- W1995187041 countsByYear W19951870412012 @default.
- W1995187041 countsByYear W19951870412013 @default.
- W1995187041 countsByYear W19951870412014 @default.
- W1995187041 countsByYear W19951870412015 @default.
- W1995187041 countsByYear W19951870412016 @default.
- W1995187041 countsByYear W19951870412017 @default.
- W1995187041 countsByYear W19951870412018 @default.
- W1995187041 countsByYear W19951870412019 @default.
- W1995187041 countsByYear W19951870412020 @default.
- W1995187041 countsByYear W19951870412021 @default.
- W1995187041 countsByYear W19951870412022 @default.
- W1995187041 countsByYear W19951870412023 @default.
- W1995187041 crossrefType "journal-article" @default.
- W1995187041 hasAuthorship W1995187041A5007563534 @default.
- W1995187041 hasAuthorship W1995187041A5014742790 @default.
- W1995187041 hasAuthorship W1995187041A5060933989 @default.
- W1995187041 hasConcept C121332964 @default.
- W1995187041 hasConcept C127313418 @default.
- W1995187041 hasConcept C151730666 @default.
- W1995187041 hasConcept C156622251 @default.
- W1995187041 hasConcept C164304813 @default.
- W1995187041 hasConcept C166957645 @default.
- W1995187041 hasConcept C17409809 @default.
- W1995187041 hasConcept C191935318 @default.
- W1995187041 hasConcept C205649164 @default.
- W1995187041 hasConcept C22117777 @default.
- W1995187041 hasConcept C62520636 @default.
- W1995187041 hasConceptScore W1995187041C121332964 @default.
- W1995187041 hasConceptScore W1995187041C127313418 @default.
- W1995187041 hasConceptScore W1995187041C151730666 @default.
- W1995187041 hasConceptScore W1995187041C156622251 @default.
- W1995187041 hasConceptScore W1995187041C164304813 @default.
- W1995187041 hasConceptScore W1995187041C166957645 @default.
- W1995187041 hasConceptScore W1995187041C17409809 @default.
- W1995187041 hasConceptScore W1995187041C191935318 @default.
- W1995187041 hasConceptScore W1995187041C205649164 @default.
- W1995187041 hasConceptScore W1995187041C22117777 @default.
- W1995187041 hasConceptScore W1995187041C62520636 @default.
- W1995187041 hasIssue "7" @default.
- W1995187041 hasLocation W19951870411 @default.
- W1995187041 hasOpenAccess W1995187041 @default.