Matches in SemOpenAlex for { <https://semopenalex.org/work/W1995276501> ?p ?o ?g. }
- W1995276501 endingPage "2532" @default.
- W1995276501 startingPage "2516" @default.
- W1995276501 abstract "Abstract In the last decade two principal factors have stimulated the progressive regain of interest for non‐reactive metal/oxide interfaces. On one hand, the efforts invested by the community of model catalysis in analyzing the reactivity properties of supported metal nano‐clusters have resulted in an abundance of high quality experimental data. They have also risen several precise questions on the direct and indirect role played by the substrate in the determination of catalytic properties of deposited metal particles, and have thus reiterated the interrogations concerning the nature of interactions at the metal/oxide interfaces. On the other hand, conceptual improvements of first‐principles calculations, such as implementations of various GGA functionals, have added enormously to the reliability of these methods, and have enlarged considerably their field of application. However, most ab initio simulations are sooner or later confronted to the constrains on the computational cost, inherent of this kind of approaches. It concerns principally the limited size of systems which can be treated in practice, a factor which turns out to be particularly limiting in realistic studies of interfaces, where the mismatch of lattice parameters is at the origin of incommensurate interface structures, long‐range reconstructions, or/and complex structural deformations and dislocations. In this context, the goal of this paper is two‐fold. First, we give an overview of essential metal/oxide interface characteristics as obtained from ab initio calculations on model systems, with a special focus on late transition metals, such as Pd, and on a highly ionic oxide substrate, such as MgO. It includes results on the relation between the strength of interfacial interaction and the type of deposited metal (transition, noble), the nature of metal deposit (isolated atoms, constituted interface), and the character of the substrate (non‐polar, polar). We also comment on effects due to defects at the oxide surface. Secondly, we describe an effective approach to simulate non‐reactive deposition of nano‐scale metal objects on a surface of highly ionic oxide. The core of this approach is a many‐body potential energy surface (PES) constructed on the basis of results of ab initio calculations for model metal/oxide interface structures. We present its application to studies on the deposition of late transition metals (Pd, Ag) on the MgO(100) surface, including the determination of substrate‐induced change of equilibrium atomic structure and morphology of metal nano‐clusters, the analysis of stress release at the interface, and the investigation of the role of the oxide substrate on the melting properties of supported clusters. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)" @default.
- W1995276501 created "2016-06-24" @default.
- W1995276501 creator A5010622544 @default.
- W1995276501 creator A5033337184 @default.
- W1995276501 creator A5052888087 @default.
- W1995276501 date "2006-06-29" @default.
- W1995276501 modified "2023-10-15" @default.
- W1995276501 title "Non-reactive metal/oxide interfaces: from model calculations towards realistic simulations" @default.
- W1995276501 cites W1613252585 @default.
- W1995276501 cites W1627938297 @default.
- W1995276501 cites W1967098241 @default.
- W1995276501 cites W1968517231 @default.
- W1995276501 cites W1973176917 @default.
- W1995276501 cites W1978789851 @default.
- W1995276501 cites W1979687258 @default.
- W1995276501 cites W1979922938 @default.
- W1995276501 cites W1980652947 @default.
- W1995276501 cites W1983120501 @default.
- W1995276501 cites W1985012653 @default.
- W1995276501 cites W1987795914 @default.
- W1995276501 cites W1990379700 @default.
- W1995276501 cites W1993349507 @default.
- W1995276501 cites W1996977341 @default.
- W1995276501 cites W2000294164 @default.
- W1995276501 cites W2000600922 @default.
- W1995276501 cites W2000794848 @default.
- W1995276501 cites W2001223822 @default.
- W1995276501 cites W2001325416 @default.
- W1995276501 cites W2001915184 @default.
- W1995276501 cites W2004809416 @default.
- W1995276501 cites W2006078568 @default.
- W1995276501 cites W2006934103 @default.
- W1995276501 cites W2009486116 @default.
- W1995276501 cites W2010067625 @default.
- W1995276501 cites W2011012317 @default.
- W1995276501 cites W2011048023 @default.
- W1995276501 cites W2011686272 @default.
- W1995276501 cites W2013612125 @default.
- W1995276501 cites W2015907710 @default.
- W1995276501 cites W2017605954 @default.
- W1995276501 cites W2017649350 @default.
- W1995276501 cites W2018989791 @default.
- W1995276501 cites W2019801150 @default.
- W1995276501 cites W2021550610 @default.
- W1995276501 cites W2029438162 @default.
- W1995276501 cites W2030337401 @default.
- W1995276501 cites W2035759113 @default.
- W1995276501 cites W2036013800 @default.
- W1995276501 cites W2036926759 @default.
- W1995276501 cites W2037649489 @default.
- W1995276501 cites W2039858068 @default.
- W1995276501 cites W2040123641 @default.
- W1995276501 cites W2041570358 @default.
- W1995276501 cites W2042287065 @default.
- W1995276501 cites W2043765707 @default.
- W1995276501 cites W2044239048 @default.
- W1995276501 cites W2046837648 @default.
- W1995276501 cites W2051140979 @default.
- W1995276501 cites W2055659989 @default.
- W1995276501 cites W2059527620 @default.
- W1995276501 cites W2060753822 @default.
- W1995276501 cites W2062579861 @default.
- W1995276501 cites W2064400717 @default.
- W1995276501 cites W2066384800 @default.
- W1995276501 cites W2067452909 @default.
- W1995276501 cites W2071204615 @default.
- W1995276501 cites W2071276155 @default.
- W1995276501 cites W2071528342 @default.
- W1995276501 cites W2072384331 @default.
- W1995276501 cites W2076971242 @default.
- W1995276501 cites W2078139015 @default.
- W1995276501 cites W2081215192 @default.
- W1995276501 cites W2082733430 @default.
- W1995276501 cites W2084849094 @default.
- W1995276501 cites W2085821461 @default.
- W1995276501 cites W2087380057 @default.
- W1995276501 cites W2087564198 @default.
- W1995276501 cites W2087650415 @default.
- W1995276501 cites W2089652446 @default.
- W1995276501 cites W2089732119 @default.
- W1995276501 cites W2090524739 @default.
- W1995276501 cites W2090733104 @default.
- W1995276501 cites W2090863353 @default.
- W1995276501 cites W2091719041 @default.
- W1995276501 cites W2094342880 @default.
- W1995276501 cites W2103238466 @default.
- W1995276501 cites W2115967600 @default.
- W1995276501 cites W2128658819 @default.
- W1995276501 cites W2144027012 @default.
- W1995276501 cites W2153050119 @default.
- W1995276501 cites W2165950510 @default.
- W1995276501 cites W2166331143 @default.
- W1995276501 doi "https://doi.org/10.1002/pssb.200541456" @default.
- W1995276501 hasPublicationYear "2006" @default.
- W1995276501 type Work @default.
- W1995276501 sameAs 1995276501 @default.
- W1995276501 citedByCount "29" @default.
- W1995276501 countsByYear W19952765012012 @default.