Matches in SemOpenAlex for { <https://semopenalex.org/work/W1995312905> ?p ?o ?g. }
- W1995312905 endingPage "188" @default.
- W1995312905 startingPage "179" @default.
- W1995312905 abstract "Quantitative analysis by near infrared (NIR) spectroscopy involves the establishment of the relationship between spectra, related to both physical and chemical information of a sample, and the corresponding parameter(s) of interest. To make a model useful and robust, other sources of variability, not directly related to the element(s) to predict should be included in the calibration set. One of the potential sources of variability is moisture. Raw materials may have different moisture levels as a function of the manufacturing lots, the geographic situation of a plant, storage conditions or the season. In a traditional calibration effort, tablets are often made at the same time and no robustness to moisture is built into the model. The present article investigates how moisture variations affect the predictive ability of a NIR calibration model for active ingredient in solid oral dosage forms. Examples of variable selection and orthogonalisation techniques are presented as an alternative to including the moisture variability in the calibration data. Tablets composed of acetaminophen, lactose, microcrystalline cellulose, hypromellose and magnesium stearate were manufactured using laboratory scale equipment. A full-factorial design was used to vary acetaminophen (five levels) and excipient ratios (three levels) to generate tablets for calibration and test. Tablets were placed in humidity chambers over saturated salt solutions and equilibrated to 11%, 32%, 52% and 75% relative humidity, respectively. Calibration and test tablets were scanned at each moisture level. Following spectral collection, the acetaminophen content was determined by HPLC. From each sample set representing tablets equilibrated at a single relative humidity, individual calibration models for acetaminophen were constructed. Test samples, stored at the alternate relative humidity conditions, were predicted. When the moisture level was different between calibration and test sets, the prediction error increased, indicating a degradation of the model performance when moisture variance was unaccounted for. Models developed using selected variable, orthogonalisation and global approaches gave significantly lower prediction errors for the test set than the individual models applied to all samples. These findings demonstrated the importance of accounting for expected sources of variance, such as moisture in order to achieve robust calibrations." @default.
- W1995312905 created "2016-06-24" @default.
- W1995312905 creator A5058129103 @default.
- W1995312905 creator A5063104786 @default.
- W1995312905 creator A5068710087 @default.
- W1995312905 creator A5085128783 @default.
- W1995312905 date "2014-01-01" @default.
- W1995312905 modified "2023-10-16" @default.
- W1995312905 title "Robustness Considerations and Effects of Moisture Variations on near Infrared Method Performance for Solid Dosage Form Assay" @default.
- W1995312905 cites W129006922 @default.
- W1995312905 cites W1536675431 @default.
- W1995312905 cites W1542860649 @default.
- W1995312905 cites W1966119769 @default.
- W1995312905 cites W1978661004 @default.
- W1995312905 cites W1982755765 @default.
- W1995312905 cites W1986931688 @default.
- W1995312905 cites W2000652760 @default.
- W1995312905 cites W2001179019 @default.
- W1995312905 cites W2005141612 @default.
- W1995312905 cites W2007050221 @default.
- W1995312905 cites W2007297543 @default.
- W1995312905 cites W2007808016 @default.
- W1995312905 cites W2008102716 @default.
- W1995312905 cites W2014731200 @default.
- W1995312905 cites W2017422910 @default.
- W1995312905 cites W2021754455 @default.
- W1995312905 cites W2037275106 @default.
- W1995312905 cites W2038485995 @default.
- W1995312905 cites W2042810309 @default.
- W1995312905 cites W2043689097 @default.
- W1995312905 cites W2054779885 @default.
- W1995312905 cites W2060659046 @default.
- W1995312905 cites W20683381 @default.
- W1995312905 cites W2074431741 @default.
- W1995312905 cites W2084169316 @default.
- W1995312905 cites W2084496053 @default.
- W1995312905 cites W2093498600 @default.
- W1995312905 cites W2108488321 @default.
- W1995312905 doi "https://doi.org/10.1255/jnirs.1097" @default.
- W1995312905 hasPublicationYear "2014" @default.
- W1995312905 type Work @default.
- W1995312905 sameAs 1995312905 @default.
- W1995312905 citedByCount "17" @default.
- W1995312905 countsByYear W19953129052014 @default.
- W1995312905 countsByYear W19953129052016 @default.
- W1995312905 countsByYear W19953129052017 @default.
- W1995312905 countsByYear W19953129052018 @default.
- W1995312905 countsByYear W19953129052019 @default.
- W1995312905 countsByYear W19953129052020 @default.
- W1995312905 countsByYear W19953129052021 @default.
- W1995312905 countsByYear W19953129052022 @default.
- W1995312905 countsByYear W19953129052023 @default.
- W1995312905 crossrefType "journal-article" @default.
- W1995312905 hasAuthorship W1995312905A5058129103 @default.
- W1995312905 hasAuthorship W1995312905A5063104786 @default.
- W1995312905 hasAuthorship W1995312905A5068710087 @default.
- W1995312905 hasAuthorship W1995312905A5085128783 @default.
- W1995312905 hasConcept C105795698 @default.
- W1995312905 hasConcept C113196181 @default.
- W1995312905 hasConcept C121332964 @default.
- W1995312905 hasConcept C127413603 @default.
- W1995312905 hasConcept C151304367 @default.
- W1995312905 hasConcept C153294291 @default.
- W1995312905 hasConcept C158960510 @default.
- W1995312905 hasConcept C159985019 @default.
- W1995312905 hasConcept C165838908 @default.
- W1995312905 hasConcept C169222746 @default.
- W1995312905 hasConcept C176864760 @default.
- W1995312905 hasConcept C178790620 @default.
- W1995312905 hasConcept C185592680 @default.
- W1995312905 hasConcept C187320778 @default.
- W1995312905 hasConcept C192562407 @default.
- W1995312905 hasConcept C24939127 @default.
- W1995312905 hasConcept C2777239854 @default.
- W1995312905 hasConcept C2778572730 @default.
- W1995312905 hasConcept C2779251873 @default.
- W1995312905 hasConcept C2779351475 @default.
- W1995312905 hasConcept C33923547 @default.
- W1995312905 hasConcept C39432304 @default.
- W1995312905 hasConcept C43571822 @default.
- W1995312905 hasConcept C43617362 @default.
- W1995312905 hasConcept C62520636 @default.
- W1995312905 hasConcept C77281830 @default.
- W1995312905 hasConceptScore W1995312905C105795698 @default.
- W1995312905 hasConceptScore W1995312905C113196181 @default.
- W1995312905 hasConceptScore W1995312905C121332964 @default.
- W1995312905 hasConceptScore W1995312905C127413603 @default.
- W1995312905 hasConceptScore W1995312905C151304367 @default.
- W1995312905 hasConceptScore W1995312905C153294291 @default.
- W1995312905 hasConceptScore W1995312905C158960510 @default.
- W1995312905 hasConceptScore W1995312905C159985019 @default.
- W1995312905 hasConceptScore W1995312905C165838908 @default.
- W1995312905 hasConceptScore W1995312905C169222746 @default.
- W1995312905 hasConceptScore W1995312905C176864760 @default.
- W1995312905 hasConceptScore W1995312905C178790620 @default.
- W1995312905 hasConceptScore W1995312905C185592680 @default.
- W1995312905 hasConceptScore W1995312905C187320778 @default.
- W1995312905 hasConceptScore W1995312905C192562407 @default.