Matches in SemOpenAlex for { <https://semopenalex.org/work/W1995433669> ?p ?o ?g. }
- W1995433669 endingPage "1552" @default.
- W1995433669 startingPage "1533" @default.
- W1995433669 abstract "Understanding crowd behavior using automated video analytics is a relevant research problem in recent times due to complex challenges in monitoring large gatherings. From an automated video surveillance perspective, estimation of crowd density in particular regions of the video scene is an indispensable tool in understanding crowd behavior. Crowd density estimation provides the measure of number of people in a given region at a specified time. While most of the existing computer vision methods use supervised training to arrive at density estimates, we propose an approach to estimate crowd density using motion cues and hierarchical clustering. The proposed method incorporates optical flow for motion estimation, contour analysis for crowd silhouette detection, and clustering to derive the crowd density. The proposed approach has been tested on a dataset collected at the Melbourne Cricket Ground (MCG) and two publicly available crowd datasets—Performance Evaluation of Tracking and Surveillance (PETS) 2009 and University of California, San Diego (UCSD) Pedestrian Traffic Database—with different crowd densities (medium- to high-density crowds) and in varied environmental conditions (in the presence of partial occlusions). We show that the proposed approach results in accurate estimates of crowd density. While the maximum mean error of $$3.62$$ was received for MCG and PETS datasets, it was $$2.66$$ for UCSD dataset. The proposed approach delivered superior performance in $$50~%$$ of the cases on PETS $$2009$$ dataset when compared with existing methods." @default.
- W1995433669 created "2016-06-24" @default.
- W1995433669 creator A5024070602 @default.
- W1995433669 creator A5060446620 @default.
- W1995433669 creator A5077902462 @default.
- W1995433669 creator A5080554686 @default.
- W1995433669 date "2014-09-23" @default.
- W1995433669 modified "2023-10-17" @default.
- W1995433669 title "Estimation of crowd density by clustering motion cues" @default.
- W1995433669 cites W1499877760 @default.
- W1995433669 cites W1515939292 @default.
- W1995433669 cites W1578285471 @default.
- W1995433669 cites W178406657 @default.
- W1995433669 cites W1912392457 @default.
- W1995433669 cites W1985560977 @default.
- W1995433669 cites W1994764242 @default.
- W1995433669 cites W1995903777 @default.
- W1995433669 cites W2001367356 @default.
- W1995433669 cites W2002059108 @default.
- W1995433669 cites W2004815011 @default.
- W1995433669 cites W2007964100 @default.
- W1995433669 cites W2010834561 @default.
- W1995433669 cites W2031912957 @default.
- W1995433669 cites W2032704023 @default.
- W1995433669 cites W2033104631 @default.
- W1995433669 cites W2033819227 @default.
- W1995433669 cites W2035973117 @default.
- W1995433669 cites W2039240409 @default.
- W1995433669 cites W2049163084 @default.
- W1995433669 cites W2051072254 @default.
- W1995433669 cites W2059363354 @default.
- W1995433669 cites W2062364908 @default.
- W1995433669 cites W2062406080 @default.
- W1995433669 cites W2063849189 @default.
- W1995433669 cites W2065994824 @default.
- W1995433669 cites W2068716781 @default.
- W1995433669 cites W2077933720 @default.
- W1995433669 cites W2086510828 @default.
- W1995433669 cites W2087149560 @default.
- W1995433669 cites W2088929512 @default.
- W1995433669 cites W2096022273 @default.
- W1995433669 cites W2096246546 @default.
- W1995433669 cites W2097350683 @default.
- W1995433669 cites W2097711399 @default.
- W1995433669 cites W2097776393 @default.
- W1995433669 cites W2099046646 @default.
- W1995433669 cites W2099244020 @default.
- W1995433669 cites W2101178587 @default.
- W1995433669 cites W2102095249 @default.
- W1995433669 cites W2102625004 @default.
- W1995433669 cites W2104208370 @default.
- W1995433669 cites W2104671481 @default.
- W1995433669 cites W2105547569 @default.
- W1995433669 cites W2107733398 @default.
- W1995433669 cites W2108725192 @default.
- W1995433669 cites W2114701396 @default.
- W1995433669 cites W2114894296 @default.
- W1995433669 cites W2115213191 @default.
- W1995433669 cites W2122190623 @default.
- W1995433669 cites W2123175289 @default.
- W1995433669 cites W2123533187 @default.
- W1995433669 cites W2127070222 @default.
- W1995433669 cites W2128768415 @default.
- W1995433669 cites W2130657708 @default.
- W1995433669 cites W2131729179 @default.
- W1995433669 cites W2133059825 @default.
- W1995433669 cites W2133519989 @default.
- W1995433669 cites W2138948290 @default.
- W1995433669 cites W2139828242 @default.
- W1995433669 cites W2144476963 @default.
- W1995433669 cites W2147221461 @default.
- W1995433669 cites W2153168647 @default.
- W1995433669 cites W2156584657 @default.
- W1995433669 cites W2160584396 @default.
- W1995433669 cites W2160801049 @default.
- W1995433669 cites W2162950292 @default.
- W1995433669 cites W2168898335 @default.
- W1995433669 cites W2534769545 @default.
- W1995433669 cites W2544870176 @default.
- W1995433669 cites W2613779721 @default.
- W1995433669 cites W3003662786 @default.
- W1995433669 cites W4252913394 @default.
- W1995433669 doi "https://doi.org/10.1007/s00371-014-1032-4" @default.
- W1995433669 hasPublicationYear "2014" @default.
- W1995433669 type Work @default.
- W1995433669 sameAs 1995433669 @default.
- W1995433669 citedByCount "25" @default.
- W1995433669 countsByYear W19954336692015 @default.
- W1995433669 countsByYear W19954336692016 @default.
- W1995433669 countsByYear W19954336692017 @default.
- W1995433669 countsByYear W19954336692018 @default.
- W1995433669 countsByYear W19954336692019 @default.
- W1995433669 countsByYear W19954336692020 @default.
- W1995433669 countsByYear W19954336692021 @default.
- W1995433669 countsByYear W19954336692022 @default.
- W1995433669 countsByYear W19954336692023 @default.
- W1995433669 crossrefType "journal-article" @default.
- W1995433669 hasAuthorship W1995433669A5024070602 @default.