Matches in SemOpenAlex for { <https://semopenalex.org/work/W1995500511> ?p ?o ?g. }
- W1995500511 endingPage "63" @default.
- W1995500511 startingPage "57" @default.
- W1995500511 abstract "Restricted accessMoreSectionsView PDF ToolsAdd to favoritesDownload CitationsTrack Citations ShareShare onFacebookTwitterLinked InRedditEmail Cite this article Gaul Gisela and Lubbert Herman 1992Cortical astrocytes activated by basic fibroblast growth factor secrete molecules that stimulate differentiation of mesencephalic dopaminergic neuronsProc. R. Soc. Lond. B.24957–63http://doi.org/10.1098/rspb.1992.0083SectionRestricted accessArticleCortical astrocytes activated by basic fibroblast growth factor secrete molecules that stimulate differentiation of mesencephalic dopaminergic neurons Gisela Gaul Google Scholar Find this author on PubMed Search for more papers by this author and Herman Lubbert Google Scholar Find this author on PubMed Search for more papers by this author Gisela Gaul Google Scholar Find this author on PubMed Search for more papers by this author and Herman Lubbert Google Scholar Find this author on PubMed Search for more papers by this author Published:22 July 1992https://doi.org/10.1098/rspb.1992.0083AbstractIn reactive gliosis, astrocytes undergo morphological and biochemical changes which can be mimicked in vitro by treatment with bFGF (basic fibroblast growth factor) or cAMP. To investigate the influence of activated cortical astrocytes on central nervous system (CNSD) neurons, we studied the effect of the supernatant from bFGF-treated astrocytes on the development of dopaminergic neurons from rat mesencephalon. Conditioned medium of untreated astrocytes stimulated dopamine uptake of mesencephalic cultures. After activation of astrocytes with bFGF this effect was greatly enhanced. It was significantly more potent than stimulating effects of other neurotrophic factors. The supernatant of these astrocytes increased the biochemical differentiation but not the survival of dopaminergic neurons in our cell culture system. Trypsin digestion and gel chromatography revealed that the activity was due to one or several proteins with molecular mass above 5 kDa. We excluded the participation of several factors known to be produced by astrocytes or that are neurotrophic for substantia nigra cultures. In particular, we provide evidence that bFGF, BDNF, NT-3, II-1, Il-6, S I00β and α2-macroglobulin were not involved in the effect of the conditioned medium. In vitro stimulation of astrocytes therefore triggers the expression of currently uncharacterized factors which influence the biochemical differentiation of mesencephalic dopaminergic neurons, the cells that degenerate in Parkinson’s disease.FootnotesThis text was harvested from a scanned image of the original document using optical character recognition (OCR) software. As such, it may contain errors. Please contact the Royal Society if you find an error you would like to see corrected. Mathematical notations produced through Infty OCR. Previous ArticleNext Article VIEW FULL TEXT DOWNLOAD PDF FiguresRelatedReferencesDetailsCited by Katiyar K, Winter C, Struzyna L, Harris J and Cullen D (2016) Mechanical elongation of astrocyte processes to create living scaffolds for nervous system regeneration, Journal of Tissue Engineering and Regenerative Medicine, 10.1002/term.2168, 11:10, (2737-2751), Online publication date: 1-Oct-2017. Sleeman I, Boshoff E and Duty S (2012) Fibroblast growth factor-20 protects against dopamine neuron loss in vitro and provides functional protection in the 6-hydroxydopamine-lesioned rat model of Parkinson's disease, Neuropharmacology, 10.1016/j.neuropharm.2012.07.029, 63:7, (1268-1277), Online publication date: 1-Dec-2012. Silva C, Fuxe K and Chadi G (2009) Involvement of Astroglial Fibroblast Growth Factor-2 and Microglia in the Nigral 6-OHDA Parkinsonism and a Possible Role of Glucocorticoid Hormone on the Glial Mediated Local Trophism and Wound Repair Birth, Life and Death of Dopaminergic Neurons in the Substantia Nigra, 10.1007/978-3-211-92660-4_15, (185-202), . Chadi G, Silva C, Maximino J, Fuxe K and da Silva G (2008) Adrenalectomy counteracts the local modulation of astroglial fibroblast growth factor system without interfering with the pattern of 6-OHDA-induced dopamine degeneration in regions of the ventral midbrain, Brain Research, 10.1016/j.brainres.2007.11.024, 1190, (23-38), Online publication date: 1-Jan-2008. do Carmo Cunha J, de Freitas Azevedo Levy B, de Luca B, de Andrade M, Gomide V and Chadi G (2007) Responses of reactive astrocytes containing S100? protein and fibroblast growth factor-2 in the border and in the adjacent preserved tissue after a contusion injury of the spinal cord in rats: implications for wound repair and neuroregeneration, Wound Repair and Regeneration, 10.1111/j.1524-475X.2006.00194.x, 15:1, (134-146), Online publication date: 1-Jan-2007. Silva V, Gomide V and Chadi G (2005) Fibroblast growth factor-2 immunoreactivity is present in the central and peripheral auditory pathways of adult rats, Journal of Morphology, 10.1002/jmor.10345, 265:2, (141-151), Online publication date: 1-Aug-2005. GOMIDE V and CHADI G (2009) GLIAL bFGF AND S100 IMMUNOREACTIVITIES INCREASE IN ASCENDING DOPAMINE PATHWAYS FOLLOWING STRIATAL 6-OHDA-INDUCED PARTIAL LESION OF THE NIGROSTRIATAL SYSTEM: A STEROLOGICAL ANALYSIS, International Journal of Neuroscience, 10.1080/00207450590521064, 115:4, (537-555), Online publication date: 1-Jan-2005. S. Riaz S, Theofilopoulos S, Jauniaux E, Stern G and Bradford H (2004) The differentiation potential of human foetal neuronal progenitor cells in vitro, Developmental Brain Research, 10.1016/j.devbrainres.2004.07.006, 153:1, (39-51), Online publication date: 1-Oct-2004. Chadi G, Gomide V, Rodrigues de Souza R, Scabello R and Maurício da Silva C (2004) Basic fibroblast growth factor, neurofilament, and glial fibrillary acidic protein immunoreactivities in the myenteric plexus of the rat esophagus and colon, Journal of Morphology, 10.1002/jmor.10252, 261:3, (323-333), Online publication date: 1-Sep-2004. Riaz S, Jauniaux E, Stern G and Bradford H (2002) The controlled conversion of human neural progenitor cells derived from foetal ventral mesencephalon into dopaminergic neurons in vitro, Developmental Brain Research, 10.1016/S0165-3806(02)00310-3, 136:1, (27-34), Online publication date: 1-May-2002. Gallo F, Morale M, Spina-Purrello V, Tirolo C, Testa N, Farinella Z, Avola R, Beaudet A and Marchetti B (2000) Basic fibroblast growth factor (bFGF) acts on both neurons and glia to mediate the neurotrophic effects of astrocytes on LHRH neurons in culture, Synapse, 10.1002/(SICI)1098-2396(20000615)36:4<233::AID-SYN1>3.0.CO;2-I, 36:4, (233-253), Online publication date: 15-Jun-2000. Pataky D, Borisoff J, Fernandes K, Tetzlaff W and Steeves J (2000) Fibroblast Growth Factor Treatment Produces Differential Effects on Survival and Neurite Outgrowth from Identified Bulbospinal Neurons in Vitro, Experimental Neurology, 10.1006/exnr.2000.7365, 163:2, (357-372), Online publication date: 1-Jun-2000. Hartley R, Margulis M, Fishman P, Lee V and Tang C (1999) Functional synapses are formed between human NTera2 (NT2N, hNT) neurons grown on astrocytes, The Journal of Comparative Neurology, 10.1002/(SICI)1096-9861(19990428)407:1<1::AID-CNE1>3.0.CO;2-Z, 407:1, (1-10), Online publication date: 28-Apr-1999. Krieglstein K, Reuss B, Maysinger D and Unsicker K (2003) Transforming growth factor-β mediates the neurotrophic effect of fibroblast growth factor-2 on midbrain dopaminergic neurons, European Journal of Neuroscience, 10.1046/j.1460-9568.1998.00324.x, 10:8, (2746-2750), Online publication date: 1-Aug-1998. Urbano F, Sierra F, Colombo J, Velasco J and Bu�o W (1997) Different voltage-gated sodium currents are expressed by human neuroblastoma NB69 cells when cultured in defined serum-free and in astroglial-conditioned media, Glia, 10.1002/(SICI)1098-1136(199702)19:2<161::AID-GLIA7>3.0.CO;2-3, 19:2, (161-170), Online publication date: 1-Feb-1997. Hoffer B and Olson L (1997) Treatment strategies for neurodegenerative diseases based on trophic factors and cell transplantation techniques Advances in Research on Neurodegeneration, 10.1007/978-3-7091-6844-8_1, (1-10), . Urbano F, Sierra F, Velasco J and Bu�o W (1997) Differential expression of voltage-gated Ca2+ conductances in human neuroblastoma NB69 cells cultured in defined serum-free and astrocyte-conditioned media, Glia, 10.1002/(SICI)1098-1136(199705)20:1<70::AID-GLIA7>3.0.CO;2-9, 20:1, (70-78), Online publication date: 1-May-1997. Hulley P, Hartikka J, Abdel'Al S, Engels P, Buerki H, Wiederhold K, Müller T, Kelly P, Lowe D and Lübbert H (1995) Inhibitors of Type IV Phosphodiesterases Reduce the Toxicity of MPTP in Substantia Nigra Neurons In Vivo , European Journal of Neuroscience, 10.1111/j.1460-9568.1995.tb01041.x, 7:12, (2431-2440), Online publication date: 1-Dec-1995. HOFFER B, HUDSON J, GERHARDT G, HENRY M, HOFFMAN A, BIDDLE P, LEELA N, MACKERLOVA L and GRANHOLM A (1995) Glial Cell Line-Derived Neurotrophic Factor Augments Midbrain Dopaminergic Circuits In Vivo Life and Death in the Nervous System, 10.1016/B978-0-08-042527-6.50032-8, (401-415), . Schwartz J, Nishiyama N, Wilson D and Taniwaki T (2004) Receptor‐mediated regulation of neuropeptide gene expression in astrocytes, Glia, 10.1002/glia.440110212, 11:2, (185-190), Online publication date: 1-Jun-1994. Moroo I, Yamada T, Makino H, Tooyama I, McGeer P, McGeer E and Hirayama K (1994) Loss of insulin receptor immunoreactivity from the substantia nigra pars compacta neurons in Parkinson's disease, Acta Neuropathologica, 10.1007/BF00313602, 87:4, (343-348), Online publication date: 1-Apr-1994. Fischer-Colbrie R, Kirchmair R, Schobert A, Olenik C, Meyer D and Winkler H (1993) Secretogranin II Is Synthesized and Secreted in Astrocyte Cultures, Journal of Neurochemistry, 10.1111/j.1471-4159.1993.tb03520.x, 60:6, (2312-2314), Online publication date: 1-Jun-1993. Maelicke A (2010) GDNF und Parkinsonismus, Nachrichten aus Chemie, Technik und Laboratorium, 10.1002/nadc.19930410713, 41:7-8, (824-825), Online publication date: 1-Jul-1993. This Issue22 July 1992Volume 249Issue 1324 Article InformationDOI:https://doi.org/10.1098/rspb.1992.0083PubMed:1279704Published by:Royal SocietyPrint ISSN:0962-8452Online ISSN:1471-2954History: Manuscript received01/04/1992Manuscript accepted27/04/1992Published online01/01/1997Published in print22/07/1992 License:Scanned images copyright © 2017, Royal Society Citations and impact Large datasets are available through Proceedings B's partnership with Dryad" @default.
- W1995500511 created "2016-06-24" @default.
- W1995500511 date "1992-07-22" @default.
- W1995500511 modified "2023-10-09" @default.
- W1995500511 title "Cortical astrocytes activated by basic fibroblast growth factor secrete molecules that stimulate differentiation of mesencephalic dopaminergic neurons" @default.
- W1995500511 cites W11321320 @default.
- W1995500511 cites W1485012056 @default.
- W1995500511 cites W1492445976 @default.
- W1995500511 cites W1707282766 @default.
- W1995500511 cites W1765527890 @default.
- W1995500511 cites W1850032865 @default.
- W1995500511 cites W1965055828 @default.
- W1995500511 cites W1971615288 @default.
- W1995500511 cites W1974967725 @default.
- W1995500511 cites W1978880296 @default.
- W1995500511 cites W1979286083 @default.
- W1995500511 cites W1984648137 @default.
- W1995500511 cites W1988791308 @default.
- W1995500511 cites W2000885272 @default.
- W1995500511 cites W2006296875 @default.
- W1995500511 cites W2011495255 @default.
- W1995500511 cites W2012941860 @default.
- W1995500511 cites W2019383843 @default.
- W1995500511 cites W2020333978 @default.
- W1995500511 cites W2021418176 @default.
- W1995500511 cites W2032006259 @default.
- W1995500511 cites W2034038906 @default.
- W1995500511 cites W2034223339 @default.
- W1995500511 cites W2038471328 @default.
- W1995500511 cites W2058650902 @default.
- W1995500511 cites W2061798311 @default.
- W1995500511 cites W2069950515 @default.
- W1995500511 cites W2081332932 @default.
- W1995500511 cites W2081915484 @default.
- W1995500511 cites W2084099920 @default.
- W1995500511 cites W2090575155 @default.
- W1995500511 cites W2128456041 @default.
- W1995500511 cites W2172291684 @default.
- W1995500511 cites W2191583278 @default.
- W1995500511 cites W2489108399 @default.
- W1995500511 cites W4242634578 @default.
- W1995500511 doi "https://doi.org/10.1098/rspb.1992.0083" @default.
- W1995500511 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/1279704" @default.
- W1995500511 hasPublicationYear "1992" @default.
- W1995500511 type Work @default.
- W1995500511 sameAs 1995500511 @default.
- W1995500511 citedByCount "33" @default.
- W1995500511 countsByYear W19955005112012 @default.
- W1995500511 countsByYear W19955005112016 @default.
- W1995500511 countsByYear W19955005112018 @default.
- W1995500511 crossrefType "journal-article" @default.
- W1995500511 hasConcept C134018914 @default.
- W1995500511 hasConcept C137183658 @default.
- W1995500511 hasConcept C169760540 @default.
- W1995500511 hasConcept C170493617 @default.
- W1995500511 hasConcept C185592680 @default.
- W1995500511 hasConcept C2777542381 @default.
- W1995500511 hasConcept C49039625 @default.
- W1995500511 hasConcept C513476851 @default.
- W1995500511 hasConcept C529278444 @default.
- W1995500511 hasConcept C552161191 @default.
- W1995500511 hasConcept C55493867 @default.
- W1995500511 hasConcept C74373430 @default.
- W1995500511 hasConcept C86803240 @default.
- W1995500511 hasConcept C95444343 @default.
- W1995500511 hasConceptScore W1995500511C134018914 @default.
- W1995500511 hasConceptScore W1995500511C137183658 @default.
- W1995500511 hasConceptScore W1995500511C169760540 @default.
- W1995500511 hasConceptScore W1995500511C170493617 @default.
- W1995500511 hasConceptScore W1995500511C185592680 @default.
- W1995500511 hasConceptScore W1995500511C2777542381 @default.
- W1995500511 hasConceptScore W1995500511C49039625 @default.
- W1995500511 hasConceptScore W1995500511C513476851 @default.
- W1995500511 hasConceptScore W1995500511C529278444 @default.
- W1995500511 hasConceptScore W1995500511C552161191 @default.
- W1995500511 hasConceptScore W1995500511C55493867 @default.
- W1995500511 hasConceptScore W1995500511C74373430 @default.
- W1995500511 hasConceptScore W1995500511C86803240 @default.
- W1995500511 hasConceptScore W1995500511C95444343 @default.
- W1995500511 hasIssue "1324" @default.
- W1995500511 hasLocation W19955005111 @default.
- W1995500511 hasLocation W19955005112 @default.
- W1995500511 hasOpenAccess W1995500511 @default.
- W1995500511 hasPrimaryLocation W19955005111 @default.
- W1995500511 hasRelatedWork W1978084332 @default.
- W1995500511 hasRelatedWork W1985378500 @default.
- W1995500511 hasRelatedWork W2008438340 @default.
- W1995500511 hasRelatedWork W2052557651 @default.
- W1995500511 hasRelatedWork W2093585116 @default.
- W1995500511 hasRelatedWork W2586506821 @default.
- W1995500511 hasRelatedWork W2747839173 @default.
- W1995500511 hasRelatedWork W2791646560 @default.
- W1995500511 hasRelatedWork W3202826550 @default.
- W1995500511 hasRelatedWork W2600883354 @default.
- W1995500511 hasVolume "249" @default.
- W1995500511 isParatext "false" @default.
- W1995500511 isRetracted "false" @default.
- W1995500511 magId "1995500511" @default.