Matches in SemOpenAlex for { <https://semopenalex.org/work/W1995602956> ?p ?o ?g. }
- W1995602956 abstract "Abstract Two new methods are developed which improve and extend the iterative moment approach to the extrapolation of the nuclear mean field from positive towards negative energy and to the prediction of various single-particle properties. These two methods still use as sole input a set of phenomenological optical-model potentials. They are improvements of the original approach because they yield more accurate predictions. They are extensions of the original approach because they provide the imaginary part of the mean field, in addition to its real part; this enables one to evaluate scattering cross sections, spectral functions and occupation probabilities, which was not possible in the previous version. These extended approaches are used to construct the neutron- 208 Pb mean field from +40 MeV down to −60 MeV. They yield practically identical results. These results are moreover extremely close to those recently obtained from a dispersive optical-model analysis of the experimental n− 208 Pb scattering cross sections. It is shown that the radial shape of the real part of the full mean field depends upon energy but remains very close to a Woods-Saxon. One of the two new methods, dubbed the variational moment approach, is well suited for the evaluation of the accuracy of the calculated Woods-Saxon parameters. If the diffuseness is set equal to 0.70 fm, the potential radius at the Fermi energy ( E F = −5.65 MeV) is found equal to (1.238±0.015)A 1 3 fm , and its volume integral per nucleon at E F to −401 ±6 MeV · fm 3 . The energy dependence of the calculated real part of the full mean field is characterized by an effective mass m∗(r; E) . The effective mass at the nuclear centre and at the Fermi energy, m∗(0; E F ) , must always be larger than the value that it takes in the Hartree-Fock approximation; this property was violated in the original iterative moment approach, but is fulfilled in both of the new methods developed here. One obtains m∗(0; E F )/m = 0.82 , in close agreement with the value found in a recent dispersive optical model analysis; in the latter, however, the quantity m∗(0; E) was infinite at several energies, while here m∗(0; E) is a smooth function of energy. The complex mean field constructed from the extended iterative moment approaches predicts n- 208 Pb cross sections which are in quite good agreement with the experimental values in an energy domain which extends up to 40 MeV. The following properties are calculated for the very deeply, deeply, weakly bound and quasibound single-particle states: energies, spreading widths, spectral functions, spectroscopic factors, occupation probabilities and root-mean-square radii. The calculated energies of the valence subshells are in close agreement with experiment. Right below the Fermi energy, the calculated occupation probability is equal to 0.85, and the spectroscopic factor to 0.73. At the bottom of the Fermi sea, the calculated occupation probability is close to 0.95. The predicted energy distributions of the strengths of the 1h 11 2 , 1g 7 2 and 1 g 9 2 deeply bound states and of the 2 h 11 2 , 1 k 17 2 and 1 j 13 2 quas good agreement with experimental evidence." @default.
- W1995602956 created "2016-06-24" @default.
- W1995602956 creator A5039490266 @default.
- W1995602956 creator A5064589108 @default.
- W1995602956 date "1989-03-01" @default.
- W1995602956 modified "2023-10-01" @default.
- W1995602956 title "From scattering to very deeply bound neutrons in 208Pb: Extended and improved moment approaches" @default.
- W1995602956 cites W102367646 @default.
- W1995602956 cites W1512814071 @default.
- W1995602956 cites W1586566805 @default.
- W1995602956 cites W1964044960 @default.
- W1995602956 cites W1966429351 @default.
- W1995602956 cites W1972259785 @default.
- W1995602956 cites W1974044226 @default.
- W1995602956 cites W1976448248 @default.
- W1995602956 cites W1991642181 @default.
- W1995602956 cites W1994342521 @default.
- W1995602956 cites W1999510180 @default.
- W1995602956 cites W2011820990 @default.
- W1995602956 cites W2012923859 @default.
- W1995602956 cites W2014090147 @default.
- W1995602956 cites W2015878739 @default.
- W1995602956 cites W2021474908 @default.
- W1995602956 cites W2023229345 @default.
- W1995602956 cites W2024927915 @default.
- W1995602956 cites W2026536616 @default.
- W1995602956 cites W2034636185 @default.
- W1995602956 cites W2037462720 @default.
- W1995602956 cites W2037753301 @default.
- W1995602956 cites W2038159533 @default.
- W1995602956 cites W2038325850 @default.
- W1995602956 cites W2038711764 @default.
- W1995602956 cites W2043040589 @default.
- W1995602956 cites W2043955041 @default.
- W1995602956 cites W2044968815 @default.
- W1995602956 cites W2051821383 @default.
- W1995602956 cites W2062556945 @default.
- W1995602956 cites W2065633390 @default.
- W1995602956 cites W2066129349 @default.
- W1995602956 cites W2067122385 @default.
- W1995602956 cites W2072799826 @default.
- W1995602956 cites W2073489741 @default.
- W1995602956 cites W2075296328 @default.
- W1995602956 cites W2083656561 @default.
- W1995602956 cites W2083721934 @default.
- W1995602956 cites W2091697002 @default.
- W1995602956 cites W2095489488 @default.
- W1995602956 cites W2128671143 @default.
- W1995602956 cites W2165257968 @default.
- W1995602956 doi "https://doi.org/10.1016/0375-9474(89)90395-3" @default.
- W1995602956 hasPublicationYear "1989" @default.
- W1995602956 type Work @default.
- W1995602956 sameAs 1995602956 @default.
- W1995602956 citedByCount "60" @default.
- W1995602956 countsByYear W19956029562012 @default.
- W1995602956 countsByYear W19956029562016 @default.
- W1995602956 countsByYear W19956029562019 @default.
- W1995602956 countsByYear W19956029562021 @default.
- W1995602956 crossrefType "journal-article" @default.
- W1995602956 hasAuthorship W1995602956A5039490266 @default.
- W1995602956 hasAuthorship W1995602956A5064589108 @default.
- W1995602956 hasConcept C121332964 @default.
- W1995602956 hasConcept C132459708 @default.
- W1995602956 hasConcept C134306372 @default.
- W1995602956 hasConcept C152568617 @default.
- W1995602956 hasConcept C172695262 @default.
- W1995602956 hasConcept C178635117 @default.
- W1995602956 hasConcept C179254644 @default.
- W1995602956 hasConcept C184779094 @default.
- W1995602956 hasConcept C185544564 @default.
- W1995602956 hasConcept C186370098 @default.
- W1995602956 hasConcept C191486275 @default.
- W1995602956 hasConcept C202213908 @default.
- W1995602956 hasConcept C202444582 @default.
- W1995602956 hasConcept C2779134732 @default.
- W1995602956 hasConcept C30475298 @default.
- W1995602956 hasConcept C33923547 @default.
- W1995602956 hasConcept C38652104 @default.
- W1995602956 hasConcept C41008148 @default.
- W1995602956 hasConcept C62520636 @default.
- W1995602956 hasConcept C9652623 @default.
- W1995602956 hasConceptScore W1995602956C121332964 @default.
- W1995602956 hasConceptScore W1995602956C132459708 @default.
- W1995602956 hasConceptScore W1995602956C134306372 @default.
- W1995602956 hasConceptScore W1995602956C152568617 @default.
- W1995602956 hasConceptScore W1995602956C172695262 @default.
- W1995602956 hasConceptScore W1995602956C178635117 @default.
- W1995602956 hasConceptScore W1995602956C179254644 @default.
- W1995602956 hasConceptScore W1995602956C184779094 @default.
- W1995602956 hasConceptScore W1995602956C185544564 @default.
- W1995602956 hasConceptScore W1995602956C186370098 @default.
- W1995602956 hasConceptScore W1995602956C191486275 @default.
- W1995602956 hasConceptScore W1995602956C202213908 @default.
- W1995602956 hasConceptScore W1995602956C202444582 @default.
- W1995602956 hasConceptScore W1995602956C2779134732 @default.
- W1995602956 hasConceptScore W1995602956C30475298 @default.
- W1995602956 hasConceptScore W1995602956C33923547 @default.
- W1995602956 hasConceptScore W1995602956C38652104 @default.
- W1995602956 hasConceptScore W1995602956C41008148 @default.
- W1995602956 hasConceptScore W1995602956C62520636 @default.