Matches in SemOpenAlex for { <https://semopenalex.org/work/W1995621679> ?p ?o ?g. }
- W1995621679 endingPage "546" @default.
- W1995621679 startingPage "509" @default.
- W1995621679 abstract "Affine Toda theories with imaginary couplings associate with any simple Lie Algebra g generalisations of sine-Gordon theory which are likewise integrable and posses soliton solutions. The solitons are “created” by exponentials of quantities F̂i(z) which lie in the untwisted affine Kac-Moody algebra ĝ and ad-diagonalise the principal Heisenberg subalgebra. When g is simply laced and highest-weight irreducible representations at level one are considered, F̂i(z) can be expressed as a vertex operator whose square vanishes. This nilpotency property is extended to all highest-weight representations of all affine untwisted Kac-Moody algebras in the sense that the highest non-vanishing power becomes proportional to the level. As a consequence, the exponential series mentioned terminates and the soliton solutions have a relatively simple algebraic expression whose properties can be studied in a general way. This means that various physical properties of the soliton solutions can be directly related to the algebraic structure. For example, a classical version of Dorey's fusing rule follows from the operator product expansion of two F̂'s, at least when g is simply laced. This adds to the list of resemblances of the solitons with respect to the particles which are the quantum excitations of the fields." @default.
- W1995621679 created "2016-06-24" @default.
- W1995621679 creator A5021797481 @default.
- W1995621679 creator A5050076811 @default.
- W1995621679 creator A5084148999 @default.
- W1995621679 date "1993-12-01" @default.
- W1995621679 modified "2023-09-27" @default.
- W1995621679 title "Affine Toda solitons and vertex operators" @default.
- W1995621679 cites W1965178017 @default.
- W1995621679 cites W1967242455 @default.
- W1995621679 cites W1975881045 @default.
- W1995621679 cites W1981554946 @default.
- W1995621679 cites W1988450209 @default.
- W1995621679 cites W1991511357 @default.
- W1995621679 cites W1993820146 @default.
- W1995621679 cites W1997464485 @default.
- W1995621679 cites W2008746361 @default.
- W1995621679 cites W2008891504 @default.
- W1995621679 cites W2008967418 @default.
- W1995621679 cites W2011504998 @default.
- W1995621679 cites W2036844011 @default.
- W1995621679 cites W2044722814 @default.
- W1995621679 cites W2051261742 @default.
- W1995621679 cites W2058454883 @default.
- W1995621679 cites W2061940093 @default.
- W1995621679 cites W2064057406 @default.
- W1995621679 cites W2065033490 @default.
- W1995621679 cites W2066203037 @default.
- W1995621679 cites W2068386286 @default.
- W1995621679 cites W2069997291 @default.
- W1995621679 cites W2090024740 @default.
- W1995621679 cites W2091108613 @default.
- W1995621679 cites W2146042918 @default.
- W1995621679 cites W2148882174 @default.
- W1995621679 cites W2158657856 @default.
- W1995621679 cites W2165241071 @default.
- W1995621679 cites W3102254725 @default.
- W1995621679 cites W4242254977 @default.
- W1995621679 doi "https://doi.org/10.1016/0550-3213(93)90541-v" @default.
- W1995621679 hasPublicationYear "1993" @default.
- W1995621679 type Work @default.
- W1995621679 sameAs 1995621679 @default.
- W1995621679 citedByCount "79" @default.
- W1995621679 countsByYear W19956216792012 @default.
- W1995621679 countsByYear W19956216792013 @default.
- W1995621679 countsByYear W19956216792014 @default.
- W1995621679 countsByYear W19956216792015 @default.
- W1995621679 countsByYear W19956216792016 @default.
- W1995621679 countsByYear W19956216792020 @default.
- W1995621679 countsByYear W19956216792022 @default.
- W1995621679 countsByYear W19956216792023 @default.
- W1995621679 crossrefType "journal-article" @default.
- W1995621679 hasAuthorship W1995621679A5021797481 @default.
- W1995621679 hasAuthorship W1995621679A5050076811 @default.
- W1995621679 hasAuthorship W1995621679A5084148999 @default.
- W1995621679 hasBestOaLocation W19956216792 @default.
- W1995621679 hasConcept C100376341 @default.
- W1995621679 hasConcept C104317684 @default.
- W1995621679 hasConcept C111472728 @default.
- W1995621679 hasConcept C118615104 @default.
- W1995621679 hasConcept C121332964 @default.
- W1995621679 hasConcept C132525143 @default.
- W1995621679 hasConcept C134306372 @default.
- W1995621679 hasConcept C136119220 @default.
- W1995621679 hasConcept C138885662 @default.
- W1995621679 hasConcept C146630112 @default.
- W1995621679 hasConcept C158448853 @default.
- W1995621679 hasConcept C158622935 @default.
- W1995621679 hasConcept C17020691 @default.
- W1995621679 hasConcept C179724543 @default.
- W1995621679 hasConcept C182419690 @default.
- W1995621679 hasConcept C185592680 @default.
- W1995621679 hasConcept C200741047 @default.
- W1995621679 hasConcept C202444582 @default.
- W1995621679 hasConcept C2780586882 @default.
- W1995621679 hasConcept C33923547 @default.
- W1995621679 hasConcept C37914503 @default.
- W1995621679 hasConcept C51568863 @default.
- W1995621679 hasConcept C5475112 @default.
- W1995621679 hasConcept C55493867 @default.
- W1995621679 hasConcept C62520636 @default.
- W1995621679 hasConcept C67996461 @default.
- W1995621679 hasConcept C7322696 @default.
- W1995621679 hasConcept C80899671 @default.
- W1995621679 hasConcept C81999800 @default.
- W1995621679 hasConcept C86339819 @default.
- W1995621679 hasConcept C87651913 @default.
- W1995621679 hasConcept C92757383 @default.
- W1995621679 hasConcept C9376300 @default.
- W1995621679 hasConceptScore W1995621679C100376341 @default.
- W1995621679 hasConceptScore W1995621679C104317684 @default.
- W1995621679 hasConceptScore W1995621679C111472728 @default.
- W1995621679 hasConceptScore W1995621679C118615104 @default.
- W1995621679 hasConceptScore W1995621679C121332964 @default.
- W1995621679 hasConceptScore W1995621679C132525143 @default.
- W1995621679 hasConceptScore W1995621679C134306372 @default.
- W1995621679 hasConceptScore W1995621679C136119220 @default.
- W1995621679 hasConceptScore W1995621679C138885662 @default.