Matches in SemOpenAlex for { <https://semopenalex.org/work/W1995634501> ?p ?o ?g. }
- W1995634501 endingPage "1361" @default.
- W1995634501 startingPage "1361" @default.
- W1995634501 abstract "Arginine-based cationic liposomes for efficient in vitro plasmid DNA delivery with low cytotoxicity Satya Ranjan Sarker, Yumiko Aoshima, Ryosuke Hokama, Takafumi Inoue, Keitaro Sou, Shinji Takeoka Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan Background: Currently available gene delivery vehicles have many limitations such as low gene delivery efficiency and high cytotoxicity. To overcome these drawbacks, we designed and synthesized two cationic lipids comprised of n-tetradecyl alcohol as the hydrophobic moiety, 3-hydrocarbon chain as the spacer, and different counterions (eg, hydrogen chloride [HCl] salt or trifluoroacetic acid [TFA] salt) in the arginine head group. Methods: Cationic lipids were hydrated in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer to prepare cationic liposomes and characterized in terms of their size, zeta potential, phase transition temperature, and morphology. Lipoplexes were then prepared and characterized in terms of their size and zeta potential in the absence or presence of serum. The morphology of the lipoplexes was determined using transmission electron microscopy and atomic force microscopy. The gene delivery efficiency was evaluated in neuronal cells and HeLa cells and compared with that of lysine-based cationic assemblies and Lipofectamine™ 2000. The cytotoxicity level of the cationic lipids was investigated and compared with that of Lipofectamine™ 2000. Results: We synthesized arginine-based cationic lipids having different counterions (ie, HCl-salt or TFA-salt) that formed cationic liposomes of around 100 nm in size. In the absence of serum, lipoplexes prepared from the arginine-based cationic liposomes and plasmid (p) DNA formed large aggregates and attained a positive zeta potential. However, in the presence of serum, the lipoplexes were smaller in size and negative in zeta potential. The morphology of the lipoplexes was vesicular. Arginine-based cationic liposomes with HCl-salt showed the highest transfection efficiency in PC-12 cells. However, arginine-based cationic liposomes with TFA salt showed the highest transfection efficiency in HeLa cells, regardless of the presence of serum, with very low associated cytotoxicity. Conclusion: The gene delivery efficiency of amino acid-based cationic assemblies is influenced by the amino acids (ie, arginine or lysine) present as the hydrophilic head group and their associated counterions. Keywords: cationic liposome, transfection efficiency, cytotoxicity, counterions, pDNA" @default.
- W1995634501 created "2016-06-24" @default.
- W1995634501 creator A5035717158 @default.
- W1995634501 creator A5037131620 @default.
- W1995634501 creator A5056947566 @default.
- W1995634501 creator A5078834024 @default.
- W1995634501 creator A5087333755 @default.
- W1995634501 creator A5090954248 @default.
- W1995634501 date "2013-04-01" @default.
- W1995634501 modified "2023-10-11" @default.
- W1995634501 title "Arginine-based cationic liposomes for efficient in vitro plasmid DNA delivery with low cytotoxicity" @default.
- W1995634501 cites W1549348414 @default.
- W1995634501 cites W1579604458 @default.
- W1995634501 cites W1965467605 @default.
- W1995634501 cites W1965868925 @default.
- W1995634501 cites W1966647637 @default.
- W1995634501 cites W1967476833 @default.
- W1995634501 cites W1968113316 @default.
- W1995634501 cites W1971290197 @default.
- W1995634501 cites W1974569773 @default.
- W1995634501 cites W1983687986 @default.
- W1995634501 cites W1984111387 @default.
- W1995634501 cites W1984307295 @default.
- W1995634501 cites W1985222229 @default.
- W1995634501 cites W1989558185 @default.
- W1995634501 cites W1991303534 @default.
- W1995634501 cites W1993434883 @default.
- W1995634501 cites W1994430701 @default.
- W1995634501 cites W1994922650 @default.
- W1995634501 cites W1996024960 @default.
- W1995634501 cites W1996491430 @default.
- W1995634501 cites W2000130544 @default.
- W1995634501 cites W2002209149 @default.
- W1995634501 cites W2006262570 @default.
- W1995634501 cites W2006986838 @default.
- W1995634501 cites W2007695303 @default.
- W1995634501 cites W2009043677 @default.
- W1995634501 cites W2013156289 @default.
- W1995634501 cites W2017404438 @default.
- W1995634501 cites W2018199835 @default.
- W1995634501 cites W2023287503 @default.
- W1995634501 cites W2029441191 @default.
- W1995634501 cites W2029766213 @default.
- W1995634501 cites W2033515337 @default.
- W1995634501 cites W2039678547 @default.
- W1995634501 cites W2040042243 @default.
- W1995634501 cites W2041795324 @default.
- W1995634501 cites W2042487849 @default.
- W1995634501 cites W2044388752 @default.
- W1995634501 cites W2044467264 @default.
- W1995634501 cites W2048928172 @default.
- W1995634501 cites W2050688935 @default.
- W1995634501 cites W2051311183 @default.
- W1995634501 cites W2053873441 @default.
- W1995634501 cites W2060571512 @default.
- W1995634501 cites W2069252711 @default.
- W1995634501 cites W2073699878 @default.
- W1995634501 cites W2091983858 @default.
- W1995634501 cites W2128387421 @default.
- W1995634501 cites W2144855395 @default.
- W1995634501 cites W2161757353 @default.
- W1995634501 cites W2167551641 @default.
- W1995634501 cites W2314516700 @default.
- W1995634501 cites W2101727103 @default.
- W1995634501 doi "https://doi.org/10.2147/ijn.s38903" @default.
- W1995634501 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3626367" @default.
- W1995634501 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23630419" @default.
- W1995634501 hasPublicationYear "2013" @default.
- W1995634501 type Work @default.
- W1995634501 sameAs 1995634501 @default.
- W1995634501 citedByCount "15" @default.
- W1995634501 countsByYear W19956345012015 @default.
- W1995634501 countsByYear W19956345012017 @default.
- W1995634501 countsByYear W19956345012018 @default.
- W1995634501 countsByYear W19956345012019 @default.
- W1995634501 countsByYear W19956345012020 @default.
- W1995634501 countsByYear W19956345012021 @default.
- W1995634501 countsByYear W19956345012023 @default.
- W1995634501 crossrefType "journal-article" @default.
- W1995634501 hasAuthorship W1995634501A5035717158 @default.
- W1995634501 hasAuthorship W1995634501A5037131620 @default.
- W1995634501 hasAuthorship W1995634501A5056947566 @default.
- W1995634501 hasAuthorship W1995634501A5078834024 @default.
- W1995634501 hasAuthorship W1995634501A5087333755 @default.
- W1995634501 hasAuthorship W1995634501A5090954248 @default.
- W1995634501 hasBestOaLocation W19956345011 @default.
- W1995634501 hasConcept C104317684 @default.
- W1995634501 hasConcept C109316439 @default.
- W1995634501 hasConcept C12554922 @default.
- W1995634501 hasConcept C135983454 @default.
- W1995634501 hasConcept C13965031 @default.
- W1995634501 hasConcept C155672457 @default.
- W1995634501 hasConcept C155887181 @default.
- W1995634501 hasConcept C15920480 @default.
- W1995634501 hasConcept C171250308 @default.
- W1995634501 hasConcept C178790620 @default.
- W1995634501 hasConcept C183882617 @default.
- W1995634501 hasConcept C185154212 @default.