Matches in SemOpenAlex for { <https://semopenalex.org/work/W1995643151> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W1995643151 endingPage "3313" @default.
- W1995643151 startingPage "3303" @default.
- W1995643151 abstract "There is a great deal of instances in multiphase reactor engineering where the system's state is labeled using categorical indices to depict class memberships. Remarkable examples encompass the labeling of flow patterns and regime transitions in multiphase porous media flows, the macro and microscale fluidization states in fluid–solid or fluid–fluid–solid reactors, the bubble wake morphologies, the bed initial contraction/expansion in fluidization, etc. The design of general-purpose flow pattern recognizers for multiphase reactors requires implementation of feature selection algorithms and classifier design methods. Feature selection algorithms enable extracting the most informative feature sets to be included in the data-driven inference engine (or classifier). In this work, supervised classifiers were built by modeling the class-conditional probability functions of class memberships. The discriminant functions yielding the best class separation were searched using the following statistical and neural-network-based classifiers: Gaussian (quadratic discrimination rule), linear (normal based), nearest mean class, nearest neighbor, k-nearest neighbor, binary decision tree, radial basis functions and multilayer perceptron neural networks. These approaches were benchmarked using, as an example, the three-class trickle-bed flow-regimes problem (Low interaction regime [LIR], high interaction regime [HIR], transition regime [TR]) for which a comprehensive knowledge-referenced database is available (5061 flow regime observation records). For a given model complexity, the multilayer perceptron (MLP) neural network outperformed the other approaches in terms of accuracy. Enhanced phenomenological consistency and immunity against overfitting of the MLP model were achieved by embedding specific domain prior knowledge. The model captured with success the hierarchical linking nature of the categories during monotonic increase (respectively, decrease) of fluid throughputs (respectively, gas density) from LIR to HIR through TR. Misclassification between the non-adjacent LIR and HIR classes was kept to a minimum and the model yielded cross-validated error of 16% for the 5061 database records." @default.
- W1995643151 created "2016-06-24" @default.
- W1995643151 creator A5030300321 @default.
- W1995643151 creator A5069616165 @default.
- W1995643151 creator A5089443428 @default.
- W1995643151 date "2004-08-01" @default.
- W1995643151 modified "2023-09-27" @default.
- W1995643151 title "Designing supervised classifiers for multiphase flow data classification" @default.
- W1995643151 cites W1977007007 @default.
- W1995643151 cites W1979934682 @default.
- W1995643151 cites W2031848479 @default.
- W1995643151 cites W2032845127 @default.
- W1995643151 cites W2073012102 @default.
- W1995643151 cites W2075036680 @default.
- W1995643151 cites W2088941319 @default.
- W1995643151 cites W2109580649 @default.
- W1995643151 cites W2111331493 @default.
- W1995643151 cites W2122539036 @default.
- W1995643151 cites W2125474673 @default.
- W1995643151 cites W2149772057 @default.
- W1995643151 cites W2155399784 @default.
- W1995643151 cites W2158953298 @default.
- W1995643151 cites W2766736793 @default.
- W1995643151 cites W2018825343 @default.
- W1995643151 doi "https://doi.org/10.1016/j.ces.2004.05.005" @default.
- W1995643151 hasPublicationYear "2004" @default.
- W1995643151 type Work @default.
- W1995643151 sameAs 1995643151 @default.
- W1995643151 citedByCount "6" @default.
- W1995643151 countsByYear W19956431512019 @default.
- W1995643151 crossrefType "journal-article" @default.
- W1995643151 hasAuthorship W1995643151A5030300321 @default.
- W1995643151 hasAuthorship W1995643151A5069616165 @default.
- W1995643151 hasAuthorship W1995643151A5089443428 @default.
- W1995643151 hasConcept C119857082 @default.
- W1995643151 hasConcept C124101348 @default.
- W1995643151 hasConcept C148483581 @default.
- W1995643151 hasConcept C153180895 @default.
- W1995643151 hasConcept C154945302 @default.
- W1995643151 hasConcept C179717631 @default.
- W1995643151 hasConcept C41008148 @default.
- W1995643151 hasConcept C50644808 @default.
- W1995643151 hasConcept C60908668 @default.
- W1995643151 hasConceptScore W1995643151C119857082 @default.
- W1995643151 hasConceptScore W1995643151C124101348 @default.
- W1995643151 hasConceptScore W1995643151C148483581 @default.
- W1995643151 hasConceptScore W1995643151C153180895 @default.
- W1995643151 hasConceptScore W1995643151C154945302 @default.
- W1995643151 hasConceptScore W1995643151C179717631 @default.
- W1995643151 hasConceptScore W1995643151C41008148 @default.
- W1995643151 hasConceptScore W1995643151C50644808 @default.
- W1995643151 hasConceptScore W1995643151C60908668 @default.
- W1995643151 hasIssue "16" @default.
- W1995643151 hasLocation W19956431511 @default.
- W1995643151 hasOpenAccess W1995643151 @default.
- W1995643151 hasPrimaryLocation W19956431511 @default.
- W1995643151 hasRelatedWork W2924231309 @default.
- W1995643151 hasRelatedWork W2940336242 @default.
- W1995643151 hasRelatedWork W2941320171 @default.
- W1995643151 hasRelatedWork W3106494386 @default.
- W1995643151 hasRelatedWork W3150651898 @default.
- W1995643151 hasRelatedWork W3185179407 @default.
- W1995643151 hasRelatedWork W4231994957 @default.
- W1995643151 hasRelatedWork W4285741730 @default.
- W1995643151 hasRelatedWork W4307161108 @default.
- W1995643151 hasRelatedWork W3128183380 @default.
- W1995643151 hasVolume "59" @default.
- W1995643151 isParatext "false" @default.
- W1995643151 isRetracted "false" @default.
- W1995643151 magId "1995643151" @default.
- W1995643151 workType "article" @default.