Matches in SemOpenAlex for { <https://semopenalex.org/work/W1995763641> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W1995763641 endingPage "78" @default.
- W1995763641 startingPage "55" @default.
- W1995763641 abstract "Abstract The quantum thermodynamics of the ideal gas is treated by means of the particle entropies σ = ka . The non-dimensional entropy numbers a are calculated by the extended, temperature-dependent Schrödinger equation applying periodic boundary conditions. The Boltzmann constant k represents the atomic entropy unit. The quantized particle entropies a are used to calculate the Boltzmann distribution f =exp( α − a ), the density of entropy levels D ( a ), the dimensionless chemical potential α = μ / kT , etc . – The thermodynamics of the ideal gas is treated on the basis of entropy quanta by means of the density matrix formalism. In this way we obtain the total particle entropy A , the thermodynamic entropy S (equation of Sackur-Tetrode), the internal and the Helmholtz free energy E and F , respectively, etc . Moreover, it can also be shown on the basis of entropy quanta that the entropy of a closed system in thermal equilibrium has a maximum value, S = S max . Against this, the entropy S ′ of an arbitrary non-equilibrium state is always smaller, S ′ < S max (second law of thermodynamics). – Application of ordinary density matrix theory to a closed system of N particles leads to the result that the entropy S does not change in time, d S /d t =0, regardless whether we consider an equilibrium state, S = S max , or a non-equilibrium state, S = S ′. Consequently, S cannot irreversibly change from S ′ to S max . However, any irreversible process is accompanied by a positive entropy production P =d S /d t >0. In order to overcome this obvious contradiction, we discuss the entropy evolution in time by means of the commutator equation G =i[ P , t ], which is deduced from very general assumptions. Here P and t are the operators of the entropy production P and the time t . Accordingly, P and t do not commute in general, and hence P and t are not sharply defined simultaneously. Instead we have uncertainties Δ P and Δ t , which are expressed by the uncertainty relation of the N -particle system, Δ P Δ t ≥(1/2)|〈 G 〉|=( γ /2) k . This P − t uncertainty relation easily allows a discussion of the evolution of the entropy S in time t from S ′ to S max . Now the irreversible steps are correctly described by the entropy production P =d S /d t > 0, and the thermal equilibrium by P =0, ∆ P =0, and thus the lifetime ∆ t =∞." @default.
- W1995763641 created "2016-06-24" @default.
- W1995763641 creator A5069870288 @default.
- W1995763641 date "2003-01-01" @default.
- W1995763641 modified "2023-09-26" @default.
- W1995763641 title "Particle Entropies and Entropy Quanta: IV. The Ideal Gas, the Second Law of Thermodynamics, and the <i>P</i>–<i>t</i> Uncertainty Relation" @default.
- W1995763641 cites W2058239431 @default.
- W1995763641 cites W2090099030 @default.
- W1995763641 cites W2319220654 @default.
- W1995763641 cites W2320831354 @default.
- W1995763641 cites W2330913477 @default.
- W1995763641 doi "https://doi.org/10.1524/zpch.217.1.55.18963" @default.
- W1995763641 hasPublicationYear "2003" @default.
- W1995763641 type Work @default.
- W1995763641 sameAs 1995763641 @default.
- W1995763641 citedByCount "5" @default.
- W1995763641 countsByYear W19957636412019 @default.
- W1995763641 countsByYear W19957636412022 @default.
- W1995763641 crossrefType "journal-article" @default.
- W1995763641 hasAuthorship W1995763641A5069870288 @default.
- W1995763641 hasConcept C106301342 @default.
- W1995763641 hasConcept C119820323 @default.
- W1995763641 hasConcept C121332964 @default.
- W1995763641 hasConcept C124589349 @default.
- W1995763641 hasConcept C148563202 @default.
- W1995763641 hasConcept C165995430 @default.
- W1995763641 hasConcept C179434709 @default.
- W1995763641 hasConcept C24872484 @default.
- W1995763641 hasConcept C27592594 @default.
- W1995763641 hasConcept C30342001 @default.
- W1995763641 hasConcept C33932047 @default.
- W1995763641 hasConcept C35304006 @default.
- W1995763641 hasConcept C42047476 @default.
- W1995763641 hasConcept C49775889 @default.
- W1995763641 hasConcept C56911000 @default.
- W1995763641 hasConcept C62520636 @default.
- W1995763641 hasConcept C74859849 @default.
- W1995763641 hasConcept C84114770 @default.
- W1995763641 hasConcept C97355855 @default.
- W1995763641 hasConcept C97785096 @default.
- W1995763641 hasConceptScore W1995763641C106301342 @default.
- W1995763641 hasConceptScore W1995763641C119820323 @default.
- W1995763641 hasConceptScore W1995763641C121332964 @default.
- W1995763641 hasConceptScore W1995763641C124589349 @default.
- W1995763641 hasConceptScore W1995763641C148563202 @default.
- W1995763641 hasConceptScore W1995763641C165995430 @default.
- W1995763641 hasConceptScore W1995763641C179434709 @default.
- W1995763641 hasConceptScore W1995763641C24872484 @default.
- W1995763641 hasConceptScore W1995763641C27592594 @default.
- W1995763641 hasConceptScore W1995763641C30342001 @default.
- W1995763641 hasConceptScore W1995763641C33932047 @default.
- W1995763641 hasConceptScore W1995763641C35304006 @default.
- W1995763641 hasConceptScore W1995763641C42047476 @default.
- W1995763641 hasConceptScore W1995763641C49775889 @default.
- W1995763641 hasConceptScore W1995763641C56911000 @default.
- W1995763641 hasConceptScore W1995763641C62520636 @default.
- W1995763641 hasConceptScore W1995763641C74859849 @default.
- W1995763641 hasConceptScore W1995763641C84114770 @default.
- W1995763641 hasConceptScore W1995763641C97355855 @default.
- W1995763641 hasConceptScore W1995763641C97785096 @default.
- W1995763641 hasIssue "1" @default.
- W1995763641 hasLocation W19957636411 @default.
- W1995763641 hasOpenAccess W1995763641 @default.
- W1995763641 hasPrimaryLocation W19957636411 @default.
- W1995763641 hasRelatedWork W1519661313 @default.
- W1995763641 hasRelatedWork W1527265500 @default.
- W1995763641 hasRelatedWork W1545218940 @default.
- W1995763641 hasRelatedWork W1995763641 @default.
- W1995763641 hasRelatedWork W2264133897 @default.
- W1995763641 hasRelatedWork W2963955600 @default.
- W1995763641 hasRelatedWork W2968859719 @default.
- W1995763641 hasRelatedWork W3037161660 @default.
- W1995763641 hasRelatedWork W4288055497 @default.
- W1995763641 hasRelatedWork W614595764 @default.
- W1995763641 hasVolume "217" @default.
- W1995763641 isParatext "false" @default.
- W1995763641 isRetracted "false" @default.
- W1995763641 magId "1995763641" @default.
- W1995763641 workType "article" @default.