Matches in SemOpenAlex for { <https://semopenalex.org/work/W1995850362> ?p ?o ?g. }
- W1995850362 endingPage "1309" @default.
- W1995850362 startingPage "1298" @default.
- W1995850362 abstract "A turbulent nonpremixed bluff body ethylene flame is studied both experimentally and computationally. Experimentally, the soot volume fraction is measured using laser-induced incandescence (LII). Three distinct regions are observed in the flame: a low-strain recirculation zone, a downstream jet-like region, and a high-strain neck region connecting these two regions. The maximum soot volume fraction is found in the recirculation zone, but most of the soot volume is contained in the larger jet-like region further downstream. In the neck region between these two zones, soot cannot form due to large strain rates, and the small amounts of soot in this region indicate that soot rarely escapes the recirculation zone before being oxidized. The recirculation zone is characterized by a low soot intermittency, in contrast to the downstream jet-like region and previously investigated jet flames in which the soot intermittency is high. Large Eddy Simulation (LES) is used to further investigate this distinctly different evolution of soot in the recirculation zone. The LES model is found to predict the soot volume fraction profiles quite accurately, albeit with significant sensitivity to the inflow profiles of the fuel jet and air coflow. Soot is formed near the inner shear layer between the fuel jet and recirculation zone where the mixture fraction is sufficiently large to support Polycyclic Aromatic Hydrocarbon (PAH) formation. A portion of this soot is entrained into the interior of the recirculation zone where the soot growth rates are relatively low, despite the rich mixture fraction in this region. The circulation vortex then transports the soot from the interior of the recirculation zone toward less rich mixture fractions near the flame, which is situated in the outer shear layer between the air coflow and the recirculation zone. Here, the majority of soot growth occurs due to surface growth, that is, mass addition due to surface reactions with acetylene. The dominance of acetylene-based surface growth in the recirculation zone contrasts findings in previous simulations of turbulent jet flames that do not exhibit a recirculation zone, in which nucleation and PAH condensation were found to overwhelm acetylene-based surface growth." @default.
- W1995850362 created "2016-06-24" @default.
- W1995850362 creator A5000408313 @default.
- W1995850362 creator A5008224406 @default.
- W1995850362 creator A5048936220 @default.
- W1995850362 creator A5075568528 @default.
- W1995850362 creator A5076378947 @default.
- W1995850362 creator A5083544123 @default.
- W1995850362 creator A5087599128 @default.
- W1995850362 date "2013-07-01" @default.
- W1995850362 modified "2023-09-26" @default.
- W1995850362 title "Experimental and computational study of soot evolution in a turbulent nonpremixed bluff body ethylene flame" @default.
- W1995850362 cites W1963569895 @default.
- W1995850362 cites W1963730750 @default.
- W1995850362 cites W1967952459 @default.
- W1995850362 cites W1974643337 @default.
- W1995850362 cites W1975061219 @default.
- W1995850362 cites W1989424881 @default.
- W1995850362 cites W1992349774 @default.
- W1995850362 cites W1993820874 @default.
- W1995850362 cites W1995100587 @default.
- W1995850362 cites W2003529100 @default.
- W1995850362 cites W2006363887 @default.
- W1995850362 cites W2012361498 @default.
- W1995850362 cites W2012788460 @default.
- W1995850362 cites W2013110843 @default.
- W1995850362 cites W2018934541 @default.
- W1995850362 cites W2020380154 @default.
- W1995850362 cites W2022274480 @default.
- W1995850362 cites W2026139312 @default.
- W1995850362 cites W2030165098 @default.
- W1995850362 cites W2037717130 @default.
- W1995850362 cites W2040167597 @default.
- W1995850362 cites W2046281592 @default.
- W1995850362 cites W2046323456 @default.
- W1995850362 cites W2047072117 @default.
- W1995850362 cites W2047710483 @default.
- W1995850362 cites W2047810407 @default.
- W1995850362 cites W2051136085 @default.
- W1995850362 cites W2054479251 @default.
- W1995850362 cites W2055396891 @default.
- W1995850362 cites W2062712788 @default.
- W1995850362 cites W2063519068 @default.
- W1995850362 cites W2064033605 @default.
- W1995850362 cites W2065520505 @default.
- W1995850362 cites W2070208371 @default.
- W1995850362 cites W2072803122 @default.
- W1995850362 cites W2072892476 @default.
- W1995850362 cites W2073022339 @default.
- W1995850362 cites W2074447412 @default.
- W1995850362 cites W2075230606 @default.
- W1995850362 cites W2079062813 @default.
- W1995850362 cites W2084237264 @default.
- W1995850362 cites W2086209713 @default.
- W1995850362 cites W2088704204 @default.
- W1995850362 cites W2093640639 @default.
- W1995850362 cites W2094114345 @default.
- W1995850362 cites W2100966356 @default.
- W1995850362 cites W2108957157 @default.
- W1995850362 cites W2126932531 @default.
- W1995850362 cites W2127384957 @default.
- W1995850362 cites W2163629397 @default.
- W1995850362 cites W2568355961 @default.
- W1995850362 doi "https://doi.org/10.1016/j.combustflame.2013.02.010" @default.
- W1995850362 hasPublicationYear "2013" @default.
- W1995850362 type Work @default.
- W1995850362 sameAs 1995850362 @default.
- W1995850362 citedByCount "50" @default.
- W1995850362 countsByYear W19958503622013 @default.
- W1995850362 countsByYear W19958503622014 @default.
- W1995850362 countsByYear W19958503622015 @default.
- W1995850362 countsByYear W19958503622016 @default.
- W1995850362 countsByYear W19958503622017 @default.
- W1995850362 countsByYear W19958503622018 @default.
- W1995850362 countsByYear W19958503622019 @default.
- W1995850362 countsByYear W19958503622020 @default.
- W1995850362 countsByYear W19958503622021 @default.
- W1995850362 countsByYear W19958503622022 @default.
- W1995850362 countsByYear W19958503622023 @default.
- W1995850362 crossrefType "journal-article" @default.
- W1995850362 hasAuthorship W1995850362A5000408313 @default.
- W1995850362 hasAuthorship W1995850362A5008224406 @default.
- W1995850362 hasAuthorship W1995850362A5048936220 @default.
- W1995850362 hasAuthorship W1995850362A5075568528 @default.
- W1995850362 hasAuthorship W1995850362A5076378947 @default.
- W1995850362 hasAuthorship W1995850362A5083544123 @default.
- W1995850362 hasAuthorship W1995850362A5087599128 @default.
- W1995850362 hasConcept C105923489 @default.
- W1995850362 hasConcept C119947313 @default.
- W1995850362 hasConcept C121332964 @default.
- W1995850362 hasConcept C159985019 @default.
- W1995850362 hasConcept C178790620 @default.
- W1995850362 hasConcept C185592680 @default.
- W1995850362 hasConcept C192562407 @default.
- W1995850362 hasConcept C196558001 @default.
- W1995850362 hasConcept C20556612 @default.
- W1995850362 hasConcept C2775925408 @default.
- W1995850362 hasConcept C49249380 @default.