Matches in SemOpenAlex for { <https://semopenalex.org/work/W1995970169> ?p ?o ?g. }
- W1995970169 endingPage "290" @default.
- W1995970169 startingPage "281" @default.
- W1995970169 abstract "Intelligent optimization refers to the promising technique of integrating learning mechanisms into (meta-)heuristic search. In this paper, we use multi-agent reinforcement learning for building high-quality solutions for the multi-mode resource-constrained project scheduling problem (MRCPSP). We use a network of distributed reinforcement learning agents that cooperate to jointly learn a well-performing constructive heuristic. Each agent, being responsible for one activity, uses two simple learning devices, called learning automata, that learn to select a successor activity order and a mode, respectively. By coupling the reward signals for both learning tasks, we can clearly show the advantage of using reinforcement learning in search. We present some comparative results, to show that our method can compete with the best performing algorithms for the MRCPSP, yet using only simple learning schemes without the burden of complex fine-tuning." @default.
- W1995970169 created "2016-06-24" @default.
- W1995970169 creator A5013075653 @default.
- W1995970169 creator A5051354803 @default.
- W1995970169 creator A5058282435 @default.
- W1995970169 creator A5065890852 @default.
- W1995970169 date "2011-02-01" @default.
- W1995970169 modified "2023-09-30" @default.
- W1995970169 title "Learning agents for the multi-mode project scheduling problem" @default.
- W1995970169 cites W1585050601 @default.
- W1995970169 cites W1588020177 @default.
- W1995970169 cites W1967520000 @default.
- W1995970169 cites W1969848548 @default.
- W1995970169 cites W1973131489 @default.
- W1995970169 cites W1978355921 @default.
- W1995970169 cites W1979627836 @default.
- W1995970169 cites W1981525734 @default.
- W1995970169 cites W1985909617 @default.
- W1995970169 cites W1987080057 @default.
- W1995970169 cites W2003759470 @default.
- W1995970169 cites W2020044608 @default.
- W1995970169 cites W2022080785 @default.
- W1995970169 cites W2024742034 @default.
- W1995970169 cites W2036112575 @default.
- W1995970169 cites W2038345112 @default.
- W1995970169 cites W2052334377 @default.
- W1995970169 cites W2055522783 @default.
- W1995970169 cites W2065515777 @default.
- W1995970169 cites W2067462952 @default.
- W1995970169 cites W2070891082 @default.
- W1995970169 cites W2101130101 @default.
- W1995970169 cites W2124152208 @default.
- W1995970169 cites W2152999180 @default.
- W1995970169 cites W4239600669 @default.
- W1995970169 cites W85289681 @default.
- W1995970169 doi "https://doi.org/10.1057/jors.2010.101" @default.
- W1995970169 hasPublicationYear "2011" @default.
- W1995970169 type Work @default.
- W1995970169 sameAs 1995970169 @default.
- W1995970169 citedByCount "34" @default.
- W1995970169 countsByYear W19959701692012 @default.
- W1995970169 countsByYear W19959701692013 @default.
- W1995970169 countsByYear W19959701692014 @default.
- W1995970169 countsByYear W19959701692015 @default.
- W1995970169 countsByYear W19959701692016 @default.
- W1995970169 countsByYear W19959701692017 @default.
- W1995970169 countsByYear W19959701692018 @default.
- W1995970169 countsByYear W19959701692019 @default.
- W1995970169 countsByYear W19959701692020 @default.
- W1995970169 countsByYear W19959701692021 @default.
- W1995970169 countsByYear W19959701692022 @default.
- W1995970169 countsByYear W19959701692023 @default.
- W1995970169 crossrefType "journal-article" @default.
- W1995970169 hasAuthorship W1995970169A5013075653 @default.
- W1995970169 hasAuthorship W1995970169A5051354803 @default.
- W1995970169 hasAuthorship W1995970169A5058282435 @default.
- W1995970169 hasAuthorship W1995970169A5065890852 @default.
- W1995970169 hasBestOaLocation W19959701692 @default.
- W1995970169 hasConcept C112505250 @default.
- W1995970169 hasConcept C119857082 @default.
- W1995970169 hasConcept C120314980 @default.
- W1995970169 hasConcept C126255220 @default.
- W1995970169 hasConcept C134306372 @default.
- W1995970169 hasConcept C154945302 @default.
- W1995970169 hasConcept C173801870 @default.
- W1995970169 hasConcept C206729178 @default.
- W1995970169 hasConcept C2776807809 @default.
- W1995970169 hasConcept C33923547 @default.
- W1995970169 hasConcept C41008148 @default.
- W1995970169 hasConcept C75306776 @default.
- W1995970169 hasConcept C97541855 @default.
- W1995970169 hasConceptScore W1995970169C112505250 @default.
- W1995970169 hasConceptScore W1995970169C119857082 @default.
- W1995970169 hasConceptScore W1995970169C120314980 @default.
- W1995970169 hasConceptScore W1995970169C126255220 @default.
- W1995970169 hasConceptScore W1995970169C134306372 @default.
- W1995970169 hasConceptScore W1995970169C154945302 @default.
- W1995970169 hasConceptScore W1995970169C173801870 @default.
- W1995970169 hasConceptScore W1995970169C206729178 @default.
- W1995970169 hasConceptScore W1995970169C2776807809 @default.
- W1995970169 hasConceptScore W1995970169C33923547 @default.
- W1995970169 hasConceptScore W1995970169C41008148 @default.
- W1995970169 hasConceptScore W1995970169C75306776 @default.
- W1995970169 hasConceptScore W1995970169C97541855 @default.
- W1995970169 hasIssue "2" @default.
- W1995970169 hasLocation W19959701691 @default.
- W1995970169 hasLocation W19959701692 @default.
- W1995970169 hasOpenAccess W1995970169 @default.
- W1995970169 hasPrimaryLocation W19959701691 @default.
- W1995970169 hasRelatedWork W1510610859 @default.
- W1995970169 hasRelatedWork W1545451257 @default.
- W1995970169 hasRelatedWork W1882733036 @default.
- W1995970169 hasRelatedWork W1992741870 @default.
- W1995970169 hasRelatedWork W2019538257 @default.
- W1995970169 hasRelatedWork W2109998134 @default.
- W1995970169 hasRelatedWork W2111861907 @default.
- W1995970169 hasRelatedWork W2160425906 @default.
- W1995970169 hasRelatedWork W2546696010 @default.