Matches in SemOpenAlex for { <https://semopenalex.org/work/W1995992858> ?p ?o ?g. }
- W1995992858 endingPage "15" @default.
- W1995992858 startingPage "1" @default.
- W1995992858 abstract "2108 agricultural soil samples (Ap-horizon, 0–20 cm) were collected in Europe (33 countries, area 5.6 million km2) as part of the recently completed GEMAS (GEochemical Mapping of Agricultural and grazing land Soil) soil mapping project. GEMAS soil data have been used to provide a general view of element origin and mobility with a main focus on source parent material (and source rocks) at the continental scale, either by reference to average crustal abundances or to normalized patterns of element mobility during weathering processes. The survey area covers a large territory with diverse types of soil parent materials, with distinct geological history and a wide range of climate zones, and landscapes. To normalize the chemical composition of European agricultural soil, mean values and standard deviation of the selected elements have been compared to model compositions of the upper continental crust (UCC) and mean European river suspended sediment. Some elements are enriched relative to the UCC (Al, P, Pb, Zr,) whereas others, such as Mg, Na and Sr are depleted. The concept of the UCC extended normalization pattern has been applied to selected elements. The mean values of Rb, K, Y, Ti, Al, Si, Zr, Ce and Fe are very similar to the values from the UCC model, even when standard deviations indicate slight enrichment or depletion. Zirconium has the best fit to the UCC model using both mean value and standard deviation. Lead and Cr are enriched in European soil when compared to the UCC model, but their standard deviation values span a large, particularly towards very low values, which can be interpreted as a lithological effect. GEMAS soil data have been normalized to Al and Na, taking into account the main lithologies of the UCC, in order to discriminate provenance sources. Additionally, sodium normalization highlights variations related to the soluble and insoluble behavior of some elements (e.g., K, Rb versus Ti, Al, Si, V, Y, Zr, Ba, and La, respectively), their reactivity (e.g, Fe, Mn, Zn) and association with carbonates (e.g., Ca and Sr). Maps of Europe showing the spatial distribution of normalized compositions and element ratios reveal difficulties with the use of classical element ratios because of the large lithological differences in compositions of soil parent material. The ratio maps and color composite images extracted from the GEMAS data can help to discriminate the main lithologies in Europe at the regional scale but need to be used with caution due to the complexity of superimposed processes responsible for the soil chemical composition." @default.
- W1995992858 created "2016-06-24" @default.
- W1995992858 creator A5004043407 @default.
- W1995992858 creator A5055950280 @default.
- W1995992858 creator A5063492027 @default.
- W1995992858 creator A5081318544 @default.
- W1995992858 creator A5085597747 @default.
- W1995992858 date "2015-03-01" @default.
- W1995992858 modified "2023-10-02" @default.
- W1995992858 title "Geochemical fingerprinting and source discrimination of agricultural soils at continental scale" @default.
- W1995992858 cites W1620220385 @default.
- W1995992858 cites W1782049738 @default.
- W1995992858 cites W1817088834 @default.
- W1995992858 cites W1965559100 @default.
- W1995992858 cites W1970531672 @default.
- W1995992858 cites W1976550006 @default.
- W1995992858 cites W1976739212 @default.
- W1995992858 cites W1977532706 @default.
- W1995992858 cites W1977979180 @default.
- W1995992858 cites W1987098141 @default.
- W1995992858 cites W1997637051 @default.
- W1995992858 cites W1999660767 @default.
- W1995992858 cites W2000991527 @default.
- W1995992858 cites W2001381924 @default.
- W1995992858 cites W2003890015 @default.
- W1995992858 cites W2004574778 @default.
- W1995992858 cites W2009129432 @default.
- W1995992858 cites W2009896465 @default.
- W1995992858 cites W2011425963 @default.
- W1995992858 cites W2013598643 @default.
- W1995992858 cites W2015092465 @default.
- W1995992858 cites W2018376581 @default.
- W1995992858 cites W2024488528 @default.
- W1995992858 cites W2029401070 @default.
- W1995992858 cites W2030510384 @default.
- W1995992858 cites W2032453821 @default.
- W1995992858 cites W2036763175 @default.
- W1995992858 cites W2042444662 @default.
- W1995992858 cites W2045047396 @default.
- W1995992858 cites W2045555997 @default.
- W1995992858 cites W2045887401 @default.
- W1995992858 cites W2050118620 @default.
- W1995992858 cites W2052509935 @default.
- W1995992858 cites W2058520516 @default.
- W1995992858 cites W2060425250 @default.
- W1995992858 cites W2061895284 @default.
- W1995992858 cites W2063723675 @default.
- W1995992858 cites W2072329007 @default.
- W1995992858 cites W2073409166 @default.
- W1995992858 cites W2074328138 @default.
- W1995992858 cites W2077871763 @default.
- W1995992858 cites W2079246086 @default.
- W1995992858 cites W2080257037 @default.
- W1995992858 cites W2080889734 @default.
- W1995992858 cites W2082229661 @default.
- W1995992858 cites W2085776063 @default.
- W1995992858 cites W2087662765 @default.
- W1995992858 cites W2087937118 @default.
- W1995992858 cites W2093723562 @default.
- W1995992858 cites W2095408941 @default.
- W1995992858 cites W2101281105 @default.
- W1995992858 cites W2101339760 @default.
- W1995992858 cites W2102029231 @default.
- W1995992858 cites W2102372757 @default.
- W1995992858 cites W2103930806 @default.
- W1995992858 cites W2119438235 @default.
- W1995992858 cites W2136673224 @default.
- W1995992858 cites W2139950654 @default.
- W1995992858 cites W2168522520 @default.
- W1995992858 cites W2170822074 @default.
- W1995992858 cites W2247098479 @default.
- W1995992858 doi "https://doi.org/10.1016/j.chemgeo.2014.12.004" @default.
- W1995992858 hasPublicationYear "2015" @default.
- W1995992858 type Work @default.
- W1995992858 sameAs 1995992858 @default.
- W1995992858 citedByCount "37" @default.
- W1995992858 countsByYear W19959928582015 @default.
- W1995992858 countsByYear W19959928582016 @default.
- W1995992858 countsByYear W19959928582017 @default.
- W1995992858 countsByYear W19959928582018 @default.
- W1995992858 countsByYear W19959928582019 @default.
- W1995992858 countsByYear W19959928582020 @default.
- W1995992858 countsByYear W19959928582021 @default.
- W1995992858 countsByYear W19959928582022 @default.
- W1995992858 countsByYear W19959928582023 @default.
- W1995992858 crossrefType "journal-article" @default.
- W1995992858 hasAuthorship W1995992858A5004043407 @default.
- W1995992858 hasAuthorship W1995992858A5055950280 @default.
- W1995992858 hasAuthorship W1995992858A5063492027 @default.
- W1995992858 hasAuthorship W1995992858A5081318544 @default.
- W1995992858 hasAuthorship W1995992858A5085597747 @default.
- W1995992858 hasConcept C105795698 @default.
- W1995992858 hasConcept C114793014 @default.
- W1995992858 hasConcept C127313418 @default.
- W1995992858 hasConcept C141646446 @default.
- W1995992858 hasConcept C159390177 @default.
- W1995992858 hasConcept C159750122 @default.
- W1995992858 hasConcept C17409809 @default.