Matches in SemOpenAlex for { <https://semopenalex.org/work/W1996041982> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W1996041982 abstract "Let p: E-B be a principal S' bundle with B dominated by a finite complex. Then it is easy to show that E is also dominated by a finite complex. In this paper we show, under suitable additional hypotheses, that in fact E has the homotopy type of a finite complex. The proof is carried out by computing Wall's finiteness obstruction for E. Let X be a (possibly infinite) CW complex which is dominated by a finite complex and let A=Z(vr(X)). In [8] Wall defines an obstruction a(X)cKO(A) to finding a finite complex with the same homotopy type as X. If F i E B is a fiber space with total space, base, and fiber dominated by finite CW complexes, it is natural to ask whether a(E) can be computed in terms of a(F), a(B), and invariants of the fiber space. Since c(F), a(E), and o(B) are elements of KoZ(71(F)), kOZ(v1(E)), and koZ(v1(B)) respectively, and --17r(F)-v1(E)-v1(B)-... is exact, the solution of the general problem involves an extension problem. In an effort to obtain a better understanding of the relationship between these problems, we will prove the MAIN THEOREM. Let p: E-?B be a principal S1 bundle such that (i) B is a CW complex dominated by a finite complex; (ii) j#:1r(S1)-?--,1(E) is a monomorphism; and (iii) r1(E) is abelian. Then E is dominated by afinite complex and a(E)=O. The universal covering space EL of E and the action of r1(E) on P are determined in ?1. This information is then used in ?2 to prove the theorem. The problem considered here was first raised by Lal in [3]. Unfortunately, the main theorems of that paper (Theorems 2 and 3) do not hold in the generality Lal claims, but appear to require additional hypotheses. A forthcoming paper by the author [0] contains a counterexample to Lal's Theorems 2 and 3 as well as a modified version of Lal's Theorem 3. Received by the editors June 9, 1970 and, in revised form, April 23, 1971. AMS 1970 subject classifications. Primary 57C05; Secondary 57C10, 57C50. 'Partially supported by the NSF under grant number GP12837. ? American Mathematical Society 1972" @default.
- W1996041982 created "2016-06-24" @default.
- W1996041982 creator A5021361965 @default.
- W1996041982 date "1972-02-01" @default.
- W1996041982 modified "2023-09-26" @default.
- W1996041982 title "The Wall invariant of certain $S^{1}$ bundles" @default.
- W1996041982 cites W1965055378 @default.
- W1996041982 cites W2027102513 @default.
- W1996041982 cites W2048356353 @default.
- W1996041982 cites W2069265968 @default.
- W1996041982 cites W2564442007 @default.
- W1996041982 doi "https://doi.org/10.1090/s0002-9939-1972-0287545-5" @default.
- W1996041982 hasPublicationYear "1972" @default.
- W1996041982 type Work @default.
- W1996041982 sameAs 1996041982 @default.
- W1996041982 citedByCount "2" @default.
- W1996041982 crossrefType "journal-article" @default.
- W1996041982 hasAuthorship W1996041982A5021361965 @default.
- W1996041982 hasBestOaLocation W19960419821 @default.
- W1996041982 hasConcept C114614502 @default.
- W1996041982 hasConcept C118615104 @default.
- W1996041982 hasConcept C136119220 @default.
- W1996041982 hasConcept C146710177 @default.
- W1996041982 hasConcept C159985019 @default.
- W1996041982 hasConcept C192562407 @default.
- W1996041982 hasConcept C202232017 @default.
- W1996041982 hasConcept C202444582 @default.
- W1996041982 hasConcept C24129628 @default.
- W1996041982 hasConcept C2778134712 @default.
- W1996041982 hasConcept C33923547 @default.
- W1996041982 hasConcept C55537702 @default.
- W1996041982 hasConcept C5961521 @default.
- W1996041982 hasConcept C92757383 @default.
- W1996041982 hasConceptScore W1996041982C114614502 @default.
- W1996041982 hasConceptScore W1996041982C118615104 @default.
- W1996041982 hasConceptScore W1996041982C136119220 @default.
- W1996041982 hasConceptScore W1996041982C146710177 @default.
- W1996041982 hasConceptScore W1996041982C159985019 @default.
- W1996041982 hasConceptScore W1996041982C192562407 @default.
- W1996041982 hasConceptScore W1996041982C202232017 @default.
- W1996041982 hasConceptScore W1996041982C202444582 @default.
- W1996041982 hasConceptScore W1996041982C24129628 @default.
- W1996041982 hasConceptScore W1996041982C2778134712 @default.
- W1996041982 hasConceptScore W1996041982C33923547 @default.
- W1996041982 hasConceptScore W1996041982C55537702 @default.
- W1996041982 hasConceptScore W1996041982C5961521 @default.
- W1996041982 hasConceptScore W1996041982C92757383 @default.
- W1996041982 hasLocation W19960419821 @default.
- W1996041982 hasOpenAccess W1996041982 @default.
- W1996041982 hasPrimaryLocation W19960419821 @default.
- W1996041982 hasRelatedWork W1972994420 @default.
- W1996041982 hasRelatedWork W1992114410 @default.
- W1996041982 hasRelatedWork W1996058357 @default.
- W1996041982 hasRelatedWork W1996516812 @default.
- W1996041982 hasRelatedWork W2005101918 @default.
- W1996041982 hasRelatedWork W2009008394 @default.
- W1996041982 hasRelatedWork W2010319678 @default.
- W1996041982 hasRelatedWork W2018051556 @default.
- W1996041982 hasRelatedWork W2028176543 @default.
- W1996041982 hasRelatedWork W2029783238 @default.
- W1996041982 hasRelatedWork W2054576558 @default.
- W1996041982 hasRelatedWork W2063513900 @default.
- W1996041982 hasRelatedWork W2093889670 @default.
- W1996041982 hasRelatedWork W2110075639 @default.
- W1996041982 hasRelatedWork W2129678180 @default.
- W1996041982 hasRelatedWork W2565317631 @default.
- W1996041982 hasRelatedWork W2741183703 @default.
- W1996041982 hasRelatedWork W2945050470 @default.
- W1996041982 hasRelatedWork W2987603558 @default.
- W1996041982 hasRelatedWork W3148236663 @default.
- W1996041982 isParatext "false" @default.
- W1996041982 isRetracted "false" @default.
- W1996041982 magId "1996041982" @default.
- W1996041982 workType "article" @default.