Matches in SemOpenAlex for { <https://semopenalex.org/work/W1996073327> ?p ?o ?g. }
- W1996073327 endingPage "646" @default.
- W1996073327 startingPage "633" @default.
- W1996073327 abstract "Many isotopes in nuclear materials exhibit strong peaks in neutron absorption cross sections in the epithermal energy range (1–1000 eV). These peaks (often referred to as resonances) occur at energies specific to particular isotopes, providing a means of isotope identification and concentration measurements. The high penetration of epithermal neutrons through most materials is very useful for studies where samples consist of heavy-Z elements opaque to X-rays and sometimes to thermal neutrons as well. The characterization of nuclear fuel elements in their cladding can benefit from the development of high resolution neutron resonance absorption imaging (NRAI), enabled by recently developed spatially-resolved neutron time-of-flight detectors. In this technique the neutron transmission of the sample is measured as a function of spatial location and of neutron energy. In the region of the spectra that borders the resonance energy for a particular isotope, the reduction in transmission can be used to acquire an image revealing the 2-dimensional distribution of that isotope within the sample. Provided that the energy of each transmitted neutron is measured by the neutron detector used and the irradiated sample possesses neutron absorption resonances, then isotope-specific location maps can be acquired simultaneously for several isotopes. This can be done even in the case where samples are opaque or have very similar transmission for thermal neutrons and X-rays or where only low concentrations of particular isotopes are present (<0.1 atom% in some cases). Ultimately, such radiographs of isotope location can be utilized to measure isotope concentration, and can even be combined to produce three-dimensional distributions using tomographic methods. In this paper we present the proof-of-principle of NRAI and transmission Bragg edge imaging performed at Flight Path 5 (FP5) at the LANSCE pulsed, moderated neutron source of Los Alamos National Laboratory. A set of urania mockup fuel assemblies with intentionally introduced defects was investigated. The maps of elemental composition of pellets containing urania and tungsten were obtained simultaneously by resonance absorption imaging with spatial resolution better than ∼200 μm, while the voids and cracks were revealed by the transmission images obtained with thermal and cold neutrons. Our proof-of-principle experiments demonstrate that simultaneous acquisition of resonance and Bragg edge spectra enables concurrent mapping of isotope distributions, imaging of cracks and voids as well as measurements of some crystallographic parameters of fuel assemblies and their cladding. A detailed study of energy-dependent neutron statistics achievable at FP5 with our present detection system is also presented for a wide range of neutron energies." @default.
- W1996073327 created "2016-06-24" @default.
- W1996073327 creator A5005322563 @default.
- W1996073327 creator A5020129731 @default.
- W1996073327 creator A5031736422 @default.
- W1996073327 creator A5035182214 @default.
- W1996073327 creator A5064277387 @default.
- W1996073327 creator A5068575989 @default.
- W1996073327 creator A5085338208 @default.
- W1996073327 creator A5091623520 @default.
- W1996073327 date "2013-09-01" @default.
- W1996073327 modified "2023-09-30" @default.
- W1996073327 title "Non-destructive studies of fuel pellets by neutron resonance absorption radiography and thermal neutron radiography" @default.
- W1996073327 cites W1523064661 @default.
- W1996073327 cites W1544767519 @default.
- W1996073327 cites W1575325457 @default.
- W1996073327 cites W1630132000 @default.
- W1996073327 cites W1944463704 @default.
- W1996073327 cites W1965118735 @default.
- W1996073327 cites W1966103374 @default.
- W1996073327 cites W1968891336 @default.
- W1996073327 cites W1970696584 @default.
- W1996073327 cites W1971421218 @default.
- W1996073327 cites W1973151687 @default.
- W1996073327 cites W1980248254 @default.
- W1996073327 cites W1983506770 @default.
- W1996073327 cites W1985943941 @default.
- W1996073327 cites W1989301643 @default.
- W1996073327 cites W1996662927 @default.
- W1996073327 cites W1998953309 @default.
- W1996073327 cites W2005597967 @default.
- W1996073327 cites W2010912097 @default.
- W1996073327 cites W2013277356 @default.
- W1996073327 cites W2016824099 @default.
- W1996073327 cites W2017532447 @default.
- W1996073327 cites W2022182277 @default.
- W1996073327 cites W2023118411 @default.
- W1996073327 cites W2029055072 @default.
- W1996073327 cites W2030370797 @default.
- W1996073327 cites W2034916157 @default.
- W1996073327 cites W2042527878 @default.
- W1996073327 cites W2042655818 @default.
- W1996073327 cites W2045397451 @default.
- W1996073327 cites W2045401770 @default.
- W1996073327 cites W2045880886 @default.
- W1996073327 cites W2057123841 @default.
- W1996073327 cites W2057447963 @default.
- W1996073327 cites W2061844929 @default.
- W1996073327 cites W2064491377 @default.
- W1996073327 cites W2066661827 @default.
- W1996073327 cites W2084215947 @default.
- W1996073327 cites W2089329566 @default.
- W1996073327 cites W2091641523 @default.
- W1996073327 cites W2091820522 @default.
- W1996073327 cites W2103826147 @default.
- W1996073327 cites W2141465758 @default.
- W1996073327 cites W2160659450 @default.
- W1996073327 cites W2171461274 @default.
- W1996073327 cites W2178520943 @default.
- W1996073327 cites W2254905507 @default.
- W1996073327 cites W37730626 @default.
- W1996073327 doi "https://doi.org/10.1016/j.jnucmat.2013.06.007" @default.
- W1996073327 hasPublicationYear "2013" @default.
- W1996073327 type Work @default.
- W1996073327 sameAs 1996073327 @default.
- W1996073327 citedByCount "43" @default.
- W1996073327 countsByYear W19960733272013 @default.
- W1996073327 countsByYear W19960733272015 @default.
- W1996073327 countsByYear W19960733272016 @default.
- W1996073327 countsByYear W19960733272017 @default.
- W1996073327 countsByYear W19960733272018 @default.
- W1996073327 countsByYear W19960733272019 @default.
- W1996073327 countsByYear W19960733272020 @default.
- W1996073327 countsByYear W19960733272021 @default.
- W1996073327 countsByYear W19960733272022 @default.
- W1996073327 countsByYear W19960733272023 @default.
- W1996073327 crossrefType "journal-article" @default.
- W1996073327 hasAuthorship W1996073327A5005322563 @default.
- W1996073327 hasAuthorship W1996073327A5020129731 @default.
- W1996073327 hasAuthorship W1996073327A5031736422 @default.
- W1996073327 hasAuthorship W1996073327A5035182214 @default.
- W1996073327 hasAuthorship W1996073327A5064277387 @default.
- W1996073327 hasAuthorship W1996073327A5068575989 @default.
- W1996073327 hasAuthorship W1996073327A5085338208 @default.
- W1996073327 hasAuthorship W1996073327A5091623520 @default.
- W1996073327 hasConcept C120665830 @default.
- W1996073327 hasConcept C121332964 @default.
- W1996073327 hasConcept C142923127 @default.
- W1996073327 hasConcept C152568617 @default.
- W1996073327 hasConcept C164304813 @default.
- W1996073327 hasConcept C177322064 @default.
- W1996073327 hasConcept C185544564 @default.
- W1996073327 hasConcept C185592680 @default.
- W1996073327 hasConcept C192562407 @default.
- W1996073327 hasConcept C21991021 @default.
- W1996073327 hasConcept C27251351 @default.
- W1996073327 hasConcept C5688416 @default.
- W1996073327 hasConcept C60056205 @default.