Matches in SemOpenAlex for { <https://semopenalex.org/work/W1996147368> ?p ?o ?g. }
- W1996147368 endingPage "31" @default.
- W1996147368 startingPage "1" @default.
- W1996147368 abstract "The temperature dependence of ductile deformational processes suggests that the thermal anomaly associated with a cooling, syn-tectonic intrusion will produce a crustal low-viscosity horizon that will concentrate deformation in the vicinity of the pluton during cooling. This effect should be most prominent when magma is present but should also occur after solidification of the magma when flow is by solid-state processes. This paper evaluates this hypothesis for sheet-like intrusions using one-dimensional, time-dependent thermal models and accompanying predictions of viscosity vs. time history based on experimental flow laws. These models predict that for systems with an initial “normal” geothermal gradient (e.g., extensional systems, strike-slip systems, or thrust systems with low displacement rates), the base of a large plutonic sheet cools more slowly than the top and fabric development should be most pronounced on the floor of the pluton. In contrast, in megathrust systems where displacements are sufficiently rapid to produce temperature inversions, cooling is also “upside-down” and fabric development should preferentially occur along the top of plutonic sheets. Moreover, when a pluton is emplaced within a zone of inverted isotherms, the heat may be trapped within the inversion. A natural system characterized by this history should show a sharp thermal front coincident with the top of a paleo-temperature inversion. If a pluton is weaker than its country rock it will form a weak horizon in the crust throughout its cooling history and the plutonic sheet should take up the bulk of the deformation throughout its cooling history. If a pluton is stronger than its country rock under conditions of solid-state flow, however, models predict a two-phase deformational history: prior to solidification the deformation should be concentrated in the pluton with the magma representing a weak horizon in the crust, but upon crystallization the pluton should become relatively rigid with respect to its country rock and deformation should be concentrated in the wall rocks. These two cases predict markedly different structural histories, and the history could easily be misinterpreted. In the first case static mineral growth might be prominent in the wall rocks and these textures could be misinterpreted as evidence for post-tectonic emplacement. In the second case, the extensive high-T deformation of the wall rocks could be readily ascribed to non-tectonic, emplacement-related deformation rather than a consequence of syn-tectonic emplacement. The model predictions are tested with three examples of well-exposed plutonic sheets: a Neogene extensional system in Death Valley, California, and two megathrust systems in southern Alaska (Border Ranges fault system and Mclaren metamorphic belt). Structural observations from these systems are broadly consistent with the model predictions and lend support to first-order characteristics of the models. Nonetheless, more sophisticated 2-D models of the coupled thermal-mechanical system are needed to thoroughly test the hypothesis." @default.
- W1996147368 created "2016-06-24" @default.
- W1996147368 creator A5047832414 @default.
- W1996147368 date "1996-03-01" @default.
- W1996147368 modified "2023-10-16" @default.
- W1996147368 title "Fabric development in syn-tectonic intrusive sheets as a consequence of melt-dominated flow and thermal softening of the crust" @default.
- W1996147368 cites W1963649432 @default.
- W1996147368 cites W1966091017 @default.
- W1996147368 cites W1973752027 @default.
- W1996147368 cites W1974258460 @default.
- W1996147368 cites W1982101289 @default.
- W1996147368 cites W1986474988 @default.
- W1996147368 cites W1988901849 @default.
- W1996147368 cites W1989905077 @default.
- W1996147368 cites W1990867773 @default.
- W1996147368 cites W1993370872 @default.
- W1996147368 cites W1995102995 @default.
- W1996147368 cites W2000014461 @default.
- W1996147368 cites W2000658638 @default.
- W1996147368 cites W2003432404 @default.
- W1996147368 cites W2006228388 @default.
- W1996147368 cites W2009145927 @default.
- W1996147368 cites W2012441260 @default.
- W1996147368 cites W2016508757 @default.
- W1996147368 cites W2018623014 @default.
- W1996147368 cites W2041126896 @default.
- W1996147368 cites W2042126385 @default.
- W1996147368 cites W2042254374 @default.
- W1996147368 cites W2048624640 @default.
- W1996147368 cites W2049666526 @default.
- W1996147368 cites W2051229272 @default.
- W1996147368 cites W2051429519 @default.
- W1996147368 cites W2051803722 @default.
- W1996147368 cites W2051972686 @default.
- W1996147368 cites W2052021185 @default.
- W1996147368 cites W2063207326 @default.
- W1996147368 cites W2066025727 @default.
- W1996147368 cites W2072925322 @default.
- W1996147368 cites W2076576809 @default.
- W1996147368 cites W2078437864 @default.
- W1996147368 cites W2085216103 @default.
- W1996147368 cites W2086711061 @default.
- W1996147368 cites W2087768759 @default.
- W1996147368 cites W2100839676 @default.
- W1996147368 cites W2113538849 @default.
- W1996147368 cites W2121001735 @default.
- W1996147368 cites W2138772176 @default.
- W1996147368 cites W2150896271 @default.
- W1996147368 cites W2155822697 @default.
- W1996147368 cites W2158600310 @default.
- W1996147368 cites W2164777462 @default.
- W1996147368 cites W2167350798 @default.
- W1996147368 cites W2314268432 @default.
- W1996147368 cites W326883501 @default.
- W1996147368 cites W4234066025 @default.
- W1996147368 doi "https://doi.org/10.1016/0040-1951(95)00049-6" @default.
- W1996147368 hasPublicationYear "1996" @default.
- W1996147368 type Work @default.
- W1996147368 sameAs 1996147368 @default.
- W1996147368 citedByCount "50" @default.
- W1996147368 countsByYear W19961473682012 @default.
- W1996147368 countsByYear W19961473682013 @default.
- W1996147368 countsByYear W19961473682014 @default.
- W1996147368 countsByYear W19961473682015 @default.
- W1996147368 countsByYear W19961473682017 @default.
- W1996147368 countsByYear W19961473682018 @default.
- W1996147368 countsByYear W19961473682020 @default.
- W1996147368 countsByYear W19961473682022 @default.
- W1996147368 crossrefType "journal-article" @default.
- W1996147368 hasAuthorship W1996147368A5047832414 @default.
- W1996147368 hasConcept C111766609 @default.
- W1996147368 hasConcept C120806208 @default.
- W1996147368 hasConcept C121332964 @default.
- W1996147368 hasConcept C127313418 @default.
- W1996147368 hasConcept C153294291 @default.
- W1996147368 hasConcept C165205528 @default.
- W1996147368 hasConcept C17409809 @default.
- W1996147368 hasConcept C183222429 @default.
- W1996147368 hasConcept C204530211 @default.
- W1996147368 hasConcept C2776698055 @default.
- W1996147368 hasConcept C34122518 @default.
- W1996147368 hasConcept C5900021 @default.
- W1996147368 hasConcept C67236022 @default.
- W1996147368 hasConcept C77928131 @default.
- W1996147368 hasConcept C8058405 @default.
- W1996147368 hasConceptScore W1996147368C111766609 @default.
- W1996147368 hasConceptScore W1996147368C120806208 @default.
- W1996147368 hasConceptScore W1996147368C121332964 @default.
- W1996147368 hasConceptScore W1996147368C127313418 @default.
- W1996147368 hasConceptScore W1996147368C153294291 @default.
- W1996147368 hasConceptScore W1996147368C165205528 @default.
- W1996147368 hasConceptScore W1996147368C17409809 @default.
- W1996147368 hasConceptScore W1996147368C183222429 @default.
- W1996147368 hasConceptScore W1996147368C204530211 @default.
- W1996147368 hasConceptScore W1996147368C2776698055 @default.
- W1996147368 hasConceptScore W1996147368C34122518 @default.
- W1996147368 hasConceptScore W1996147368C5900021 @default.
- W1996147368 hasConceptScore W1996147368C67236022 @default.