Matches in SemOpenAlex for { <https://semopenalex.org/work/W1996363387> ?p ?o ?g. }
- W1996363387 endingPage "1167" @default.
- W1996363387 startingPage "1137" @default.
- W1996363387 abstract "4He concentrations in excess of the solubility equilibrium with the atmosphere by up to two to three orders of magnitude are observed in the Carrizo Aquifer in Texas, the Ojo Alamo and Nacimiento aquifers in the San Juan Basin, New Mexico, and the Auob Sandstone Aquifer in Namibia. A simple 4He accumulation model is applied to explain these excess 4He concentrations in terms of both in situ production and a crustal flux across the bottom layer of the aquifer. Results from the model simulations suggest variability in the 4He fluxes, ranging from 6×10−6 cm3 STP cm−2 yr−1 for the Auob Sandstone Aquifer to 3.6×10−7 cm3 STP cm−2 yr−1 for the Carrizo aquifer. For the Ojo Alamo and Nacimiento aquifers an intermediate value of 3×10−6 cm3 STP cm−2 yr−1 was estimated. The contribution of in-situ produced 4He to the measured concentrations was also estimated. This contribution is negligible for the Auob Sandstone Aquifer as compared with both the concentrations measured at the top and bottom of the aquifer for most of the pathway. In the Carrizo aquifer, in-situ produced 4He contributes 27.5% and 15.4%, to the total 4He observed at the top and bottom of the aquifer, respectively. For both aquifers of the San Juan Basin in-situ production almost entirely dominates the 4He concentrations at the top of the aquifer for most of the pathway. In contrast, the internal production is negligible as compared with the measured concentrations at the bottom of these aquifers, reaching, at most, 1.1%. The model simulations require an exponential decrease in the horizontal velocity of the water with increasing recharge distance to reproduce the distribution of 4He in these aquifers. For the Auob Sandstone Aquifer the highest range in the velocity values is obtained (25 to 0.4 m yr−1). The simulations for the Carrizo aquifer and both aquifers located in the San Juan Basin require velocities varying from 4 to 0.1 m yr−1, and from 2 to 0.3 m yr−1, respectively. For each aquifer, average permeability values were also estimated. They are generally in agreement with results obtained from pumping tests, hydrodynamic modeling and previous 14C measurements. On the basis of the results obtained by calibrating the model with the measured 4He concentrations, the mean water residence times were estimated. They agree reasonably well with 14C ages. When applied as chronologies for noble gas temperatures in the same aquifers, the calculated 4He ages allow the identification of three different climate periods similar to those previously identified using 14C ages: (1) the Holocene period (0–10 Ka BP), (2) the Last Glacial Maximum (≈18 Ka BP), and (3) the preceeding period (30–150 Ka BP)." @default.
- W1996363387 created "2016-06-24" @default.
- W1996363387 creator A5050199331 @default.
- W1996363387 creator A5073318611 @default.
- W1996363387 creator A5082627536 @default.
- W1996363387 date "2000-09-01" @default.
- W1996363387 modified "2023-10-17" @default.
- W1996363387 title "Comparison of 4He ages and 14C ages in simple aquifer systems: implications for groundwater flow and chronologies" @default.
- W1996363387 cites W1967928137 @default.
- W1996363387 cites W1968945335 @default.
- W1996363387 cites W1969209251 @default.
- W1996363387 cites W1969715815 @default.
- W1996363387 cites W1980013965 @default.
- W1996363387 cites W1984118031 @default.
- W1996363387 cites W1985137731 @default.
- W1996363387 cites W1986367206 @default.
- W1996363387 cites W1994612352 @default.
- W1996363387 cites W2000199319 @default.
- W1996363387 cites W2004317235 @default.
- W1996363387 cites W2005832584 @default.
- W1996363387 cites W2010018479 @default.
- W1996363387 cites W2016383064 @default.
- W1996363387 cites W2027158927 @default.
- W1996363387 cites W2027466910 @default.
- W1996363387 cites W2030377024 @default.
- W1996363387 cites W2035369623 @default.
- W1996363387 cites W2037355490 @default.
- W1996363387 cites W2038353096 @default.
- W1996363387 cites W2039322458 @default.
- W1996363387 cites W2042383694 @default.
- W1996363387 cites W2043349976 @default.
- W1996363387 cites W2047788254 @default.
- W1996363387 cites W2050663288 @default.
- W1996363387 cites W2052192548 @default.
- W1996363387 cites W2052664974 @default.
- W1996363387 cites W2054773422 @default.
- W1996363387 cites W2060123769 @default.
- W1996363387 cites W2067209039 @default.
- W1996363387 cites W2067426125 @default.
- W1996363387 cites W2077697240 @default.
- W1996363387 cites W2084303988 @default.
- W1996363387 cites W2096092173 @default.
- W1996363387 cites W2105450203 @default.
- W1996363387 cites W2494532174 @default.
- W1996363387 cites W2513084811 @default.
- W1996363387 cites W4251997471 @default.
- W1996363387 cites W80800636 @default.
- W1996363387 doi "https://doi.org/10.1016/s0883-2927(99)00113-4" @default.
- W1996363387 hasPublicationYear "2000" @default.
- W1996363387 type Work @default.
- W1996363387 sameAs 1996363387 @default.
- W1996363387 citedByCount "111" @default.
- W1996363387 countsByYear W19963633872012 @default.
- W1996363387 countsByYear W19963633872013 @default.
- W1996363387 countsByYear W19963633872014 @default.
- W1996363387 countsByYear W19963633872015 @default.
- W1996363387 countsByYear W19963633872016 @default.
- W1996363387 countsByYear W19963633872017 @default.
- W1996363387 countsByYear W19963633872018 @default.
- W1996363387 countsByYear W19963633872019 @default.
- W1996363387 countsByYear W19963633872020 @default.
- W1996363387 countsByYear W19963633872021 @default.
- W1996363387 countsByYear W19963633872022 @default.
- W1996363387 countsByYear W19963633872023 @default.
- W1996363387 crossrefType "journal-article" @default.
- W1996363387 hasAuthorship W1996363387A5050199331 @default.
- W1996363387 hasAuthorship W1996363387A5073318611 @default.
- W1996363387 hasAuthorship W1996363387A5082627536 @default.
- W1996363387 hasConcept C109007969 @default.
- W1996363387 hasConcept C114793014 @default.
- W1996363387 hasConcept C127313418 @default.
- W1996363387 hasConcept C131227075 @default.
- W1996363387 hasConcept C17409809 @default.
- W1996363387 hasConcept C187320778 @default.
- W1996363387 hasConcept C191897082 @default.
- W1996363387 hasConcept C192562407 @default.
- W1996363387 hasConcept C68709404 @default.
- W1996363387 hasConcept C75622301 @default.
- W1996363387 hasConcept C76177295 @default.
- W1996363387 hasConcept C76886044 @default.
- W1996363387 hasConceptScore W1996363387C109007969 @default.
- W1996363387 hasConceptScore W1996363387C114793014 @default.
- W1996363387 hasConceptScore W1996363387C127313418 @default.
- W1996363387 hasConceptScore W1996363387C131227075 @default.
- W1996363387 hasConceptScore W1996363387C17409809 @default.
- W1996363387 hasConceptScore W1996363387C187320778 @default.
- W1996363387 hasConceptScore W1996363387C191897082 @default.
- W1996363387 hasConceptScore W1996363387C192562407 @default.
- W1996363387 hasConceptScore W1996363387C68709404 @default.
- W1996363387 hasConceptScore W1996363387C75622301 @default.
- W1996363387 hasConceptScore W1996363387C76177295 @default.
- W1996363387 hasConceptScore W1996363387C76886044 @default.
- W1996363387 hasIssue "8" @default.
- W1996363387 hasLocation W19963633871 @default.
- W1996363387 hasOpenAccess W1996363387 @default.
- W1996363387 hasPrimaryLocation W19963633871 @default.
- W1996363387 hasRelatedWork W1573429580 @default.
- W1996363387 hasRelatedWork W2063834533 @default.