Matches in SemOpenAlex for { <https://semopenalex.org/work/W1996375413> ?p ?o ?g. }
- W1996375413 endingPage "1407" @default.
- W1996375413 startingPage "1371" @default.
- W1996375413 abstract "The brain faces the problem of inferring reliable hidden causes from large populations of noisy neurons, for example, the direction of a moving object from spikes in area MT. It is known that a theoretically optimal likelihood decoding could be carried out by simple linear readout neurons if weights of synaptic connections were set to certain values that depend on the tuning functions of sensory neurons. We show here that such theoretically optimal readout weights emerge autonomously through STDP in conjunction with lateral inhibition between readout neurons. In particular, we identify a class of optimal STDP learning rules with homeostatic plasticity, for which the autonomous emergence of optimal readouts can be explained on the basis of a rigorous learning theory. This theory shows that the network motif we consider approximates expectation-maximization for creating internal generative models for hidden causes of high-dimensional spike inputs. Notably, we find that this optimal functionality can be well approximated by a variety of STDP rules beyond those predicted by theory. Furthermore, we show that this learning process is very stable and automatically adjusts weights to changes in the number of readout neurons, the tuning functions of sensory neurons, and the statistics of external stimuli." @default.
- W1996375413 created "2016-06-24" @default.
- W1996375413 creator A5016261744 @default.
- W1996375413 creator A5043339871 @default.
- W1996375413 creator A5059791205 @default.
- W1996375413 date "2013-06-01" @default.
- W1996375413 modified "2023-10-16" @default.
- W1996375413 title "Emergence of Optimal Decoding of Population Codes Through STDP" @default.
- W1996375413 cites W1489333352 @default.
- W1996375413 cites W1503602982 @default.
- W1996375413 cites W1536990343 @default.
- W1996375413 cites W1678583019 @default.
- W1996375413 cites W1686266550 @default.
- W1996375413 cites W1841773938 @default.
- W1996375413 cites W1946515796 @default.
- W1996375413 cites W1964224276 @default.
- W1996375413 cites W1966894829 @default.
- W1996375413 cites W1969483963 @default.
- W1996375413 cites W1970252357 @default.
- W1996375413 cites W1978668587 @default.
- W1996375413 cites W1984578972 @default.
- W1996375413 cites W1985322212 @default.
- W1996375413 cites W2023640259 @default.
- W1996375413 cites W2026799324 @default.
- W1996375413 cites W2040382032 @default.
- W1996375413 cites W2040414277 @default.
- W1996375413 cites W2042738987 @default.
- W1996375413 cites W2046634424 @default.
- W1996375413 cites W2047535883 @default.
- W1996375413 cites W2051217769 @default.
- W1996375413 cites W2062906394 @default.
- W1996375413 cites W2063632045 @default.
- W1996375413 cites W2065158671 @default.
- W1996375413 cites W2069815761 @default.
- W1996375413 cites W2071941483 @default.
- W1996375413 cites W2078129171 @default.
- W1996375413 cites W2078640788 @default.
- W1996375413 cites W2103594871 @default.
- W1996375413 cites W2105430025 @default.
- W1996375413 cites W2107433900 @default.
- W1996375413 cites W2109234859 @default.
- W1996375413 cites W2118354656 @default.
- W1996375413 cites W2119885245 @default.
- W1996375413 cites W2132272758 @default.
- W1996375413 cites W2143886954 @default.
- W1996375413 cites W2144540603 @default.
- W1996375413 cites W2145264576 @default.
- W1996375413 cites W2146357672 @default.
- W1996375413 cites W2147101007 @default.
- W1996375413 cites W2147231083 @default.
- W1996375413 cites W2149372516 @default.
- W1996375413 cites W2151718948 @default.
- W1996375413 cites W2154559964 @default.
- W1996375413 cites W2158935809 @default.
- W1996375413 cites W2162407586 @default.
- W1996375413 cites W2167940154 @default.
- W1996375413 cites W4212863985 @default.
- W1996375413 cites W4238614602 @default.
- W1996375413 doi "https://doi.org/10.1162/neco_a_00446" @default.
- W1996375413 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23517096" @default.
- W1996375413 hasPublicationYear "2013" @default.
- W1996375413 type Work @default.
- W1996375413 sameAs 1996375413 @default.
- W1996375413 citedByCount "31" @default.
- W1996375413 countsByYear W19963754132013 @default.
- W1996375413 countsByYear W19963754132014 @default.
- W1996375413 countsByYear W19963754132015 @default.
- W1996375413 countsByYear W19963754132016 @default.
- W1996375413 countsByYear W19963754132017 @default.
- W1996375413 countsByYear W19963754132018 @default.
- W1996375413 countsByYear W19963754132020 @default.
- W1996375413 countsByYear W19963754132021 @default.
- W1996375413 countsByYear W19963754132022 @default.
- W1996375413 crossrefType "journal-article" @default.
- W1996375413 hasAuthorship W1996375413A5016261744 @default.
- W1996375413 hasAuthorship W1996375413A5043339871 @default.
- W1996375413 hasAuthorship W1996375413A5059791205 @default.
- W1996375413 hasConcept C11413529 @default.
- W1996375413 hasConcept C126255220 @default.
- W1996375413 hasConcept C144024400 @default.
- W1996375413 hasConcept C149923435 @default.
- W1996375413 hasConcept C154945302 @default.
- W1996375413 hasConcept C167966045 @default.
- W1996375413 hasConcept C169760540 @default.
- W1996375413 hasConcept C177264268 @default.
- W1996375413 hasConcept C199360897 @default.
- W1996375413 hasConcept C2776330181 @default.
- W1996375413 hasConcept C2908647359 @default.
- W1996375413 hasConcept C33923547 @default.
- W1996375413 hasConcept C39890363 @default.
- W1996375413 hasConcept C40743351 @default.
- W1996375413 hasConcept C41008148 @default.
- W1996375413 hasConcept C57273362 @default.
- W1996375413 hasConcept C77637269 @default.
- W1996375413 hasConcept C86803240 @default.
- W1996375413 hasConcept C94487597 @default.
- W1996375413 hasConceptScore W1996375413C11413529 @default.
- W1996375413 hasConceptScore W1996375413C126255220 @default.