Matches in SemOpenAlex for { <https://semopenalex.org/work/W1996423230> ?p ?o ?g. }
- W1996423230 endingPage "7633" @default.
- W1996423230 startingPage "7633" @default.
- W1996423230 abstract "Classical electrophoretic deposition (EPD) relies on continuous direct current (CDC) to deposit charged particles on electrodes. In recent decades, modulated electric fields such as pulsed direct current (PDC) and alternating current (AC) have been investigated. This paper reviews EPD under these modulated electric fields and major applications of the deposited microstructures. The paper starts with a short overview of EPD principals such as the electrical double layer of the charged particle, electrophoretic mobility and main suspension parameters including zeta potential, particle size, conductivity, viscosity and stability of the suspension. The EPD mechanisms from the earliest model reported by Hamaker and Verwey to latest models including Sarkar and Nicholson model and influence of the electrohydrodynamics and electroosmosis as well as electrode surface and its electrochemical double layer on the deposition process have been briefly discussed. Two categories of modulated electric fields, PDC and AC fields have been addressed with their advantages and disadvantages. It is found that compared to CDC, PDC offers the advantage of: i) reducing the coalescence between gas bubbles induced by water electrolysis from aqueous suspensions, hence yielding deposition of smooth and uniform coatings, ii) reducing aggregation and disaggregation of nanometer sized particles, leading to formation of uniform and homogenous deposits and, iii) PDC generates low change in pH near the electrode, thus it is convenient for deposition of biochemical and biological species in their highly active states. The main disadvantage of PDC over CDC lies in the decrease of the deposition yield. The latter can be more pronounced if low time-pulses are used. Various categories of AC signals including symmetrical fields with no net DC component and asymmetrical AC signals without and with net DC component have been discussed. Overall, the deposition rate under AC fields increases with polarization time and amplitude. With respect to frequency, the deposition rate increases with frequency up to certain value then drops at elevated frequencies. It is noted that deposition under AC signals offers the possibility to produce superior quality coatings from aqueous suspensions because electrolysis of water as well as particle orientation during the deposition could be controlled. From the application standpoint, PDC and AC, offers new application perspectives such as in biotechnology. Because under modulated electric fields, EPD can now be accomplished from aqueous suspensions with low water electrolysis rates, a variety of biochemical and biological species can be deposited to yield highly active layers suitable for a wide range of applications including biosensors, biofuel cells and bioreactors." @default.
- W1996423230 created "2016-06-24" @default.
- W1996423230 creator A5086366546 @default.
- W1996423230 date "2012-01-01" @default.
- W1996423230 modified "2023-09-30" @default.
- W1996423230 title "Electrophoretic deposition under modulated electric fields: a review" @default.
- W1996423230 cites W1487038443 @default.
- W1996423230 cites W1963757602 @default.
- W1996423230 cites W1965070993 @default.
- W1996423230 cites W1968340132 @default.
- W1996423230 cites W1969321621 @default.
- W1996423230 cites W1976642527 @default.
- W1996423230 cites W1976658829 @default.
- W1996423230 cites W1976697629 @default.
- W1996423230 cites W1977683993 @default.
- W1996423230 cites W1978763261 @default.
- W1996423230 cites W1981270467 @default.
- W1996423230 cites W1982073341 @default.
- W1996423230 cites W1984094044 @default.
- W1996423230 cites W1984594417 @default.
- W1996423230 cites W1987580403 @default.
- W1996423230 cites W1991694617 @default.
- W1996423230 cites W1995239181 @default.
- W1996423230 cites W1996827087 @default.
- W1996423230 cites W1997472797 @default.
- W1996423230 cites W1998243456 @default.
- W1996423230 cites W1999310463 @default.
- W1996423230 cites W1999333091 @default.
- W1996423230 cites W2002006165 @default.
- W1996423230 cites W2005343130 @default.
- W1996423230 cites W2007478604 @default.
- W1996423230 cites W2009404699 @default.
- W1996423230 cites W2013084939 @default.
- W1996423230 cites W2013377079 @default.
- W1996423230 cites W2019257846 @default.
- W1996423230 cites W2020180701 @default.
- W1996423230 cites W2020657242 @default.
- W1996423230 cites W2024977937 @default.
- W1996423230 cites W2029884054 @default.
- W1996423230 cites W2030682515 @default.
- W1996423230 cites W2031545763 @default.
- W1996423230 cites W2035148968 @default.
- W1996423230 cites W2037838185 @default.
- W1996423230 cites W2039248041 @default.
- W1996423230 cites W2039591802 @default.
- W1996423230 cites W2039958448 @default.
- W1996423230 cites W2042348005 @default.
- W1996423230 cites W2046335152 @default.
- W1996423230 cites W2051797516 @default.
- W1996423230 cites W2051910354 @default.
- W1996423230 cites W2053218042 @default.
- W1996423230 cites W2053781489 @default.
- W1996423230 cites W2056154629 @default.
- W1996423230 cites W2058090219 @default.
- W1996423230 cites W2059519116 @default.
- W1996423230 cites W2061382592 @default.
- W1996423230 cites W2062271123 @default.
- W1996423230 cites W2063824778 @default.
- W1996423230 cites W2067620550 @default.
- W1996423230 cites W2072880447 @default.
- W1996423230 cites W2076263769 @default.
- W1996423230 cites W2078047441 @default.
- W1996423230 cites W2078124842 @default.
- W1996423230 cites W2078793037 @default.
- W1996423230 cites W2081600186 @default.
- W1996423230 cites W2082803222 @default.
- W1996423230 cites W2083363927 @default.
- W1996423230 cites W2084123647 @default.
- W1996423230 cites W2085352297 @default.
- W1996423230 cites W2085965381 @default.
- W1996423230 cites W2088558617 @default.
- W1996423230 cites W2090915387 @default.
- W1996423230 cites W2092127745 @default.
- W1996423230 cites W2098294662 @default.
- W1996423230 cites W2106571337 @default.
- W1996423230 cites W2108851629 @default.
- W1996423230 cites W2114687853 @default.
- W1996423230 cites W2117550253 @default.
- W1996423230 cites W2126664164 @default.
- W1996423230 cites W2128479425 @default.
- W1996423230 cites W2129898915 @default.
- W1996423230 cites W2134798504 @default.
- W1996423230 cites W2142849118 @default.
- W1996423230 cites W2158550153 @default.
- W1996423230 cites W2162381821 @default.
- W1996423230 cites W2163529431 @default.
- W1996423230 cites W2169112681 @default.
- W1996423230 cites W2322809198 @default.
- W1996423230 doi "https://doi.org/10.1039/c2ra01342h" @default.
- W1996423230 hasPublicationYear "2012" @default.
- W1996423230 type Work @default.
- W1996423230 sameAs 1996423230 @default.
- W1996423230 citedByCount "154" @default.
- W1996423230 countsByYear W19964232302013 @default.
- W1996423230 countsByYear W19964232302014 @default.
- W1996423230 countsByYear W19964232302015 @default.
- W1996423230 countsByYear W19964232302016 @default.
- W1996423230 countsByYear W19964232302017 @default.