Matches in SemOpenAlex for { <https://semopenalex.org/work/W1996475268> ?p ?o ?g. }
- W1996475268 endingPage "363" @default.
- W1996475268 startingPage "336" @default.
- W1996475268 abstract "Complex computer codes are widely used in science and engineering to model physical phenomena. Global sensitivity analysis aims to identify the input parameters which have the most important impact on the code output. Sobol indices are a popular tool for performing such analysis. However, their estimates require an important number of simulations and often cannot be processed under reasonable time constraint. To handle this problem, a Gaussian process regression model is built to approximate the computer code output and the Sobol indices are estimated through it. The aim of this paper is to provide a methodology for estimating the Sobol indices through a surrogate model taking into account both the estimation errors and the surrogate model errors. In particular, it allows us to derive nonasymptotic confidence intervals for the Sobol index estimates. Furthermore, we extend the suggested strategy to the case of multifidelity computer codes which can be run at different levels of accuracy. For such simulators, we use an extension of Gaussian process regression models for multivariate outputs." @default.
- W1996475268 created "2016-06-24" @default.
- W1996475268 creator A5069128800 @default.
- W1996475268 creator A5087709706 @default.
- W1996475268 creator A5089877927 @default.
- W1996475268 date "2014-01-01" @default.
- W1996475268 modified "2023-10-16" @default.
- W1996475268 title "A Bayesian Approach for Global Sensitivity Analysis of (Multifidelity) Computer Codes" @default.
- W1996475268 cites W1973333099 @default.
- W1996475268 cites W1973492181 @default.
- W1996475268 cites W1977046327 @default.
- W1996475268 cites W1991413021 @default.
- W1996475268 cites W1991788899 @default.
- W1996475268 cites W2004489843 @default.
- W1996475268 cites W2017486265 @default.
- W1996475268 cites W2030613375 @default.
- W1996475268 cites W2043170151 @default.
- W1996475268 cites W2052893217 @default.
- W1996475268 cites W2053411831 @default.
- W1996475268 cites W2060288072 @default.
- W1996475268 cites W2065536623 @default.
- W1996475268 cites W2065775831 @default.
- W1996475268 cites W2073401015 @default.
- W1996475268 cites W2092612581 @default.
- W1996475268 cites W2097441841 @default.
- W1996475268 cites W2101589741 @default.
- W1996475268 cites W2111046434 @default.
- W1996475268 cites W2113117406 @default.
- W1996475268 cites W2115104391 @default.
- W1996475268 cites W2125107816 @default.
- W1996475268 cites W2964075504 @default.
- W1996475268 cites W4234552994 @default.
- W1996475268 doi "https://doi.org/10.1137/130926869" @default.
- W1996475268 hasPublicationYear "2014" @default.
- W1996475268 type Work @default.
- W1996475268 sameAs 1996475268 @default.
- W1996475268 citedByCount "74" @default.
- W1996475268 countsByYear W19964752682014 @default.
- W1996475268 countsByYear W19964752682015 @default.
- W1996475268 countsByYear W19964752682016 @default.
- W1996475268 countsByYear W19964752682017 @default.
- W1996475268 countsByYear W19964752682018 @default.
- W1996475268 countsByYear W19964752682019 @default.
- W1996475268 countsByYear W19964752682020 @default.
- W1996475268 countsByYear W19964752682021 @default.
- W1996475268 countsByYear W19964752682022 @default.
- W1996475268 countsByYear W19964752682023 @default.
- W1996475268 crossrefType "journal-article" @default.
- W1996475268 hasAuthorship W1996475268A5069128800 @default.
- W1996475268 hasAuthorship W1996475268A5087709706 @default.
- W1996475268 hasAuthorship W1996475268A5089877927 @default.
- W1996475268 hasBestOaLocation W19964752682 @default.
- W1996475268 hasConcept C105795698 @default.
- W1996475268 hasConcept C107673813 @default.
- W1996475268 hasConcept C111919701 @default.
- W1996475268 hasConcept C11413529 @default.
- W1996475268 hasConcept C119857082 @default.
- W1996475268 hasConcept C121332964 @default.
- W1996475268 hasConcept C124101348 @default.
- W1996475268 hasConcept C127413603 @default.
- W1996475268 hasConcept C131675550 @default.
- W1996475268 hasConcept C152877465 @default.
- W1996475268 hasConcept C154945302 @default.
- W1996475268 hasConcept C161584116 @default.
- W1996475268 hasConcept C163716315 @default.
- W1996475268 hasConcept C177264268 @default.
- W1996475268 hasConcept C199360897 @default.
- W1996475268 hasConcept C21200559 @default.
- W1996475268 hasConcept C24326235 @default.
- W1996475268 hasConcept C2524010 @default.
- W1996475268 hasConcept C2776036281 @default.
- W1996475268 hasConcept C2776760102 @default.
- W1996475268 hasConcept C33923547 @default.
- W1996475268 hasConcept C41008148 @default.
- W1996475268 hasConcept C43126263 @default.
- W1996475268 hasConcept C49740808 @default.
- W1996475268 hasConcept C61326573 @default.
- W1996475268 hasConcept C62520636 @default.
- W1996475268 hasConcept C81692654 @default.
- W1996475268 hasConcept C83546350 @default.
- W1996475268 hasConceptScore W1996475268C105795698 @default.
- W1996475268 hasConceptScore W1996475268C107673813 @default.
- W1996475268 hasConceptScore W1996475268C111919701 @default.
- W1996475268 hasConceptScore W1996475268C11413529 @default.
- W1996475268 hasConceptScore W1996475268C119857082 @default.
- W1996475268 hasConceptScore W1996475268C121332964 @default.
- W1996475268 hasConceptScore W1996475268C124101348 @default.
- W1996475268 hasConceptScore W1996475268C127413603 @default.
- W1996475268 hasConceptScore W1996475268C131675550 @default.
- W1996475268 hasConceptScore W1996475268C152877465 @default.
- W1996475268 hasConceptScore W1996475268C154945302 @default.
- W1996475268 hasConceptScore W1996475268C161584116 @default.
- W1996475268 hasConceptScore W1996475268C163716315 @default.
- W1996475268 hasConceptScore W1996475268C177264268 @default.
- W1996475268 hasConceptScore W1996475268C199360897 @default.
- W1996475268 hasConceptScore W1996475268C21200559 @default.
- W1996475268 hasConceptScore W1996475268C24326235 @default.
- W1996475268 hasConceptScore W1996475268C2524010 @default.