Matches in SemOpenAlex for { <https://semopenalex.org/work/W1996482893> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W1996482893 endingPage "33" @default.
- W1996482893 startingPage "1" @default.
- W1996482893 abstract "The representation space or character variety of a finitely generated group is easy to define but difficult to do explicit computations with. The fundamental group of a knot can have two interesting representations into PSL2(C) coming from oppositely oriented complete hyperbolic structures. These two representations lift to give four excellent SL2(C) representations. The excellent curves of a knot are the components of the SL2(C) character variety containing the excellent representations. It is possible to compute geometric invariants of hyperbolic cone manifolds from suitable descriptions of the excellent curve. In this paper, Hilden, Lozano and Montesinos describe a method for analyzing the character varieties of a large class of knots. The main ingredients in this method are a non-obvious, but convenient parametrization of 2×2 complex matrices and an explicit computation relating the holonomies of the four punctures of a four punctured sphere. In order to qualify when their method will work, Hilden, Lozano and Montesinos introduce the notion of a 2n-net. A 2n-net is an interesting generalization of a 2n-plat. Recall that a 2n-plat is obtained by separately closing the top and the bottom of a 2n-strand braid. A 2n-net is the generalization obtained by allowing rational tangles at the crossing points. The given method to analyze the character variety works for any knot with a 4-net description. The method is remarkably robust. For example, it works for essentially every knot in the table in D. Rolfsen's book [Knots and links, Publish or Perish, Berkeley, Calif., 1976" @default.
- W1996482893 created "2016-06-24" @default.
- W1996482893 creator A5016520784 @default.
- W1996482893 creator A5018199234 @default.
- W1996482893 creator A5090347967 @default.
- W1996482893 date "2002-01-01" @default.
- W1996482893 modified "2023-10-16" @default.
- W1996482893 title "Character varieties and peripheral polynomials of a class of knots." @default.
- W1996482893 cites W1503968615 @default.
- W1996482893 cites W1966188277 @default.
- W1996482893 cites W1976069312 @default.
- W1996482893 cites W1976937092 @default.
- W1996482893 cites W2008821193 @default.
- W1996482893 cites W2504126002 @default.
- W1996482893 cites W3104616677 @default.
- W1996482893 hasPublicationYear "2002" @default.
- W1996482893 type Work @default.
- W1996482893 sameAs 1996482893 @default.
- W1996482893 citedByCount "4" @default.
- W1996482893 crossrefType "journal-article" @default.
- W1996482893 hasAuthorship W1996482893A5016520784 @default.
- W1996482893 hasAuthorship W1996482893A5018199234 @default.
- W1996482893 hasAuthorship W1996482893A5090347967 @default.
- W1996482893 hasConcept C114614502 @default.
- W1996482893 hasConcept C124101348 @default.
- W1996482893 hasConcept C127413603 @default.
- W1996482893 hasConcept C136119220 @default.
- W1996482893 hasConcept C139002025 @default.
- W1996482893 hasConcept C202444582 @default.
- W1996482893 hasConcept C2779863119 @default.
- W1996482893 hasConcept C33840335 @default.
- W1996482893 hasConcept C33923547 @default.
- W1996482893 hasConcept C41008148 @default.
- W1996482893 hasConcept C42360764 @default.
- W1996482893 hasConceptScore W1996482893C114614502 @default.
- W1996482893 hasConceptScore W1996482893C124101348 @default.
- W1996482893 hasConceptScore W1996482893C127413603 @default.
- W1996482893 hasConceptScore W1996482893C136119220 @default.
- W1996482893 hasConceptScore W1996482893C139002025 @default.
- W1996482893 hasConceptScore W1996482893C202444582 @default.
- W1996482893 hasConceptScore W1996482893C2779863119 @default.
- W1996482893 hasConceptScore W1996482893C33840335 @default.
- W1996482893 hasConceptScore W1996482893C33923547 @default.
- W1996482893 hasConceptScore W1996482893C41008148 @default.
- W1996482893 hasConceptScore W1996482893C42360764 @default.
- W1996482893 hasIssue "20" @default.
- W1996482893 hasLocation W19964828931 @default.
- W1996482893 hasOpenAccess W1996482893 @default.
- W1996482893 hasPrimaryLocation W19964828931 @default.
- W1996482893 hasRelatedWork W1629878932 @default.
- W1996482893 hasRelatedWork W170885368 @default.
- W1996482893 hasRelatedWork W177297783 @default.
- W1996482893 hasRelatedWork W2000388932 @default.
- W1996482893 hasRelatedWork W2029744580 @default.
- W1996482893 hasRelatedWork W2039160247 @default.
- W1996482893 hasRelatedWork W2040400833 @default.
- W1996482893 hasRelatedWork W2054265106 @default.
- W1996482893 hasRelatedWork W2123003189 @default.
- W1996482893 hasRelatedWork W2285392822 @default.
- W1996482893 hasRelatedWork W250923350 @default.
- W1996482893 hasRelatedWork W2810266277 @default.
- W1996482893 hasRelatedWork W2920882088 @default.
- W1996482893 hasRelatedWork W2950931416 @default.
- W1996482893 hasRelatedWork W2990813983 @default.
- W1996482893 hasRelatedWork W3083002310 @default.
- W1996482893 hasRelatedWork W3100007848 @default.
- W1996482893 hasRelatedWork W3103538953 @default.
- W1996482893 hasRelatedWork W3105194497 @default.
- W1996482893 hasRelatedWork W621627227 @default.
- W1996482893 isParatext "false" @default.
- W1996482893 isRetracted "false" @default.
- W1996482893 magId "1996482893" @default.
- W1996482893 workType "article" @default.