Matches in SemOpenAlex for { <https://semopenalex.org/work/W1996500460> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W1996500460 abstract "Numerous applications focus on the analysis of entities and the connections between them, and such data are naturally represented as graphs. In particular, the detection of a small subset of vertices with anomalous coordinated connectivity is of broad interest, for problems such as detecting strange traffic in a computer network or unknown communities in a social network. These problems become more difficult as the background graph grows larger and noisier and the coordination patterns become more subtle. In this paper, we discuss the computational challenges of a statistical framework designed to address this cross-mission challenge. The statistical framework is based on spectral analysis of the graph data, and three partitioning methods are evaluated for computing the principal eigenvector of the graph's residuals matrix. While a standard one-dimensional partitioning technique enables this computation for up to four billion vertices, the communication overhead prevents this method from being used for even larger graphs. Recent two-dimensional partitioning methods are shown to have much more favorable scaling properties. A data-dependent partitioning method, which has the best scaling performance, is also shown to improve computation time even as a graph changes over time, allowing amortization of the upfront cost." @default.
- W1996500460 created "2016-06-24" @default.
- W1996500460 creator A5036288885 @default.
- W1996500460 creator A5081876301 @default.
- W1996500460 date "2014-09-01" @default.
- W1996500460 modified "2023-09-23" @default.
- W1996500460 title "Sparse matrix partitioning for parallel eigenanalysis of large static and dynamic graphs" @default.
- W1996500460 cites W1482680420 @default.
- W1996500460 cites W2011655084 @default.
- W1996500460 cites W2015953751 @default.
- W1996500460 cites W2022916138 @default.
- W1996500460 cites W2035080386 @default.
- W1996500460 cites W2061919600 @default.
- W1996500460 cites W2063251739 @default.
- W1996500460 cites W2086666883 @default.
- W1996500460 cites W2093053744 @default.
- W1996500460 cites W2173213060 @default.
- W1996500460 cites W2532258155 @default.
- W1996500460 doi "https://doi.org/10.1109/hpec.2014.7040955" @default.
- W1996500460 hasPublicationYear "2014" @default.
- W1996500460 type Work @default.
- W1996500460 sameAs 1996500460 @default.
- W1996500460 citedByCount "5" @default.
- W1996500460 countsByYear W19965004602014 @default.
- W1996500460 countsByYear W19965004602015 @default.
- W1996500460 countsByYear W19965004602016 @default.
- W1996500460 countsByYear W19965004602018 @default.
- W1996500460 crossrefType "proceedings-article" @default.
- W1996500460 hasAuthorship W1996500460A5036288885 @default.
- W1996500460 hasAuthorship W1996500460A5081876301 @default.
- W1996500460 hasBestOaLocation W19965004602 @default.
- W1996500460 hasConcept C106487976 @default.
- W1996500460 hasConcept C11413529 @default.
- W1996500460 hasConcept C121332964 @default.
- W1996500460 hasConcept C159985019 @default.
- W1996500460 hasConcept C163716315 @default.
- W1996500460 hasConcept C173608175 @default.
- W1996500460 hasConcept C192562407 @default.
- W1996500460 hasConcept C41008148 @default.
- W1996500460 hasConcept C56372850 @default.
- W1996500460 hasConcept C62520636 @default.
- W1996500460 hasConceptScore W1996500460C106487976 @default.
- W1996500460 hasConceptScore W1996500460C11413529 @default.
- W1996500460 hasConceptScore W1996500460C121332964 @default.
- W1996500460 hasConceptScore W1996500460C159985019 @default.
- W1996500460 hasConceptScore W1996500460C163716315 @default.
- W1996500460 hasConceptScore W1996500460C173608175 @default.
- W1996500460 hasConceptScore W1996500460C192562407 @default.
- W1996500460 hasConceptScore W1996500460C41008148 @default.
- W1996500460 hasConceptScore W1996500460C56372850 @default.
- W1996500460 hasConceptScore W1996500460C62520636 @default.
- W1996500460 hasLocation W19965004601 @default.
- W1996500460 hasLocation W19965004602 @default.
- W1996500460 hasLocation W19965004603 @default.
- W1996500460 hasOpenAccess W1996500460 @default.
- W1996500460 hasPrimaryLocation W19965004601 @default.
- W1996500460 hasRelatedWork W1948183148 @default.
- W1996500460 hasRelatedWork W1991971747 @default.
- W1996500460 hasRelatedWork W2018906356 @default.
- W1996500460 hasRelatedWork W2064237292 @default.
- W1996500460 hasRelatedWork W2142496304 @default.
- W1996500460 hasRelatedWork W2370217726 @default.
- W1996500460 hasRelatedWork W2462574632 @default.
- W1996500460 hasRelatedWork W2989948354 @default.
- W1996500460 hasRelatedWork W3201815179 @default.
- W1996500460 hasRelatedWork W2091145045 @default.
- W1996500460 isParatext "false" @default.
- W1996500460 isRetracted "false" @default.
- W1996500460 magId "1996500460" @default.
- W1996500460 workType "article" @default.