Matches in SemOpenAlex for { <https://semopenalex.org/work/W1996530407> ?p ?o ?g. }
Showing items 1 to 53 of
53
with 100 items per page.
- W1996530407 endingPage "492" @default.
- W1996530407 startingPage "C" @default.
- W1996530407 abstract "Computer codes are developed to calculate Clebsch–Gordan coefficients of SU(3) in both SU(2)- and SO(3)-coupled bases. The efficiency of this code derives from the use of vector coherent state theory to evaluate the required coefficients directly without recursion relations. The approach extends to other compact semi-simple Lie groups. The codes are given in subroutine form so that users can incorporate the codes into other programs.Title of program: SU3CGVCSCatalogue identifier: ADTNProgram summary URL: http://cpc.cs.qub.ac.uk/summaries/ADTNProgram obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandLicensing provisions: Persons requesting the program must sign the standard CPC non-profit use licenseComputers for which the program is designed and others on which it is operable: SGI Origin 2000, HP Apollo 9000, Sun, IBM SP, PentiumOperating systems under which the program has been tested: IRIX 6.5, HP UX 10.01, SunOS, AIX, LinuxProgramming language used: FORTRAN 77Memory required to execute with typical data: On the HP system, it requires about 732 KBytes.Disk space used for output: 2100+2460 bytesNo. of bits in a word: 32 bit integer and 64 bit floating point numbers.No. of processors used: 1Has the code been vectorized: NoNo. of bytes in distributed program, including test data, etc.: 26 309No. of lines in distributed program, including test data, etc.: 3969Distribution format: tar gzip fileNature of physical problem: The group SU(3) and its Lie algebra su(3) have important applications, for example, in elementary particle physics, nuclear physics, and quantum optics [1–3]. The code presented is particularly relevant for the last two fields. Clebsch–Gordan (CG) coefficients are required whenever the symmetries of many-body systems are used for the evaluation of matrix elements of tensor operators. Moreover, the construction of CG coefficients for SU(3) serves as a nontrivial prototype for larger compact semi-simple Lie algebras and even for non semi-simple Lie algebras. It is the simplest Lie algebra to have multiplicity in its outer products and a non-canonical subalgebra, i.e., SO(3).Method of solution: Vector coherent state theory is first used to construct bases for the products of two irreducible representations (irreps) [4]. The bases are SU(2)-coupled so that SU(2)-reduced CG (or isoscalar factors) can be constructed naturally. The CG coefficients in the SO(3) bases are constructed subsequently from the overlaps between the SU(2) and SO(3) bases.Restriction on the complexity of the problem: The programs are limited by computer memory and the maximum size of variable arrays. As dimension overflow conditions are possible, they are flagged and can be fixed by following the directions given as part of the error message.Typical running time: The calculation time for a single SU(3) CG coefficient is very different for SU(2) and SO(3) bases. It varies between 7.3–54.1 ns in SGI Origin 2000, 0.81–5.48 ms in HP Apollo 9000, or 0.055–0.373 ms in Intel Pentium 4 for SU(2) bases while it is between 0.027–0.255 s in Intel Pentium 4 for SO(3) bases.Unusual features of the program: Intrinsic bit functions: and, or, and shift, called iand, ior, and ishft, respectively, in FORTRAN, are used for packing and unpacking the labels for the irreps. Intrinsic logical btest is used to test the bit for the phase factor.References:[1] Y. Ne'eman, Nucl. Phys. 26 (1961) 222; M. Gell-Man, Y. Ne'eman, The Eightfold Way, Benjamin, New York, 1964.[2] J.P. Elliott, Proc. Roy. Soc. A 245 (1958) 128, 562.[3] M. Reck, A. Zeilinger, H.J. Bernstein, P. Bertani, Phys. Rev. Lett. 73 (1994) 58; B.C. Sanders, H. de Guise, D.J. Rowe, A. Mann, J. Phys. A 32 (1999) 7111.[4] D.J. Rowe, C. Bahri, J. Math. Phys. 41 (2000) 6544." @default.
- W1996530407 created "2016-06-24" @default.
- W1996530407 creator A5033116808 @default.
- W1996530407 creator A5076236570 @default.
- W1996530407 date "1984-01-01" @default.
- W1996530407 modified "2023-09-23" @default.
- W1996530407 title "Generation of the clebsch-gordan coefficients for Sn" @default.
- W1996530407 cites W1994218545 @default.
- W1996530407 cites W2003499935 @default.
- W1996530407 cites W2067876551 @default.
- W1996530407 cites W2091150249 @default.
- W1996530407 cites W2947596026 @default.
- W1996530407 cites W3004239172 @default.
- W1996530407 cites W2797687030 @default.
- W1996530407 cites W3021789130 @default.
- W1996530407 doi "https://doi.org/10.1016/s0010-4655(84)82681-8" @default.
- W1996530407 hasPublicationYear "1984" @default.
- W1996530407 type Work @default.
- W1996530407 sameAs 1996530407 @default.
- W1996530407 citedByCount "1" @default.
- W1996530407 crossrefType "journal-article" @default.
- W1996530407 hasAuthorship W1996530407A5033116808 @default.
- W1996530407 hasAuthorship W1996530407A5076236570 @default.
- W1996530407 hasConcept C121332964 @default.
- W1996530407 hasConcept C142292226 @default.
- W1996530407 hasConcept C202444582 @default.
- W1996530407 hasConcept C23503194 @default.
- W1996530407 hasConcept C33923547 @default.
- W1996530407 hasConceptScore W1996530407C121332964 @default.
- W1996530407 hasConceptScore W1996530407C142292226 @default.
- W1996530407 hasConceptScore W1996530407C202444582 @default.
- W1996530407 hasConceptScore W1996530407C23503194 @default.
- W1996530407 hasConceptScore W1996530407C33923547 @default.
- W1996530407 hasLocation W19965304071 @default.
- W1996530407 hasOpenAccess W1996530407 @default.
- W1996530407 hasPrimaryLocation W19965304071 @default.
- W1996530407 hasRelatedWork W1536502753 @default.
- W1996530407 hasRelatedWork W2902782467 @default.
- W1996530407 hasRelatedWork W2935759653 @default.
- W1996530407 hasRelatedWork W3105167352 @default.
- W1996530407 hasRelatedWork W3148032049 @default.
- W1996530407 hasRelatedWork W54078636 @default.
- W1996530407 hasRelatedWork W1501425562 @default.
- W1996530407 hasRelatedWork W2298861036 @default.
- W1996530407 hasRelatedWork W2954470139 @default.
- W1996530407 hasRelatedWork W3084825885 @default.
- W1996530407 hasVolume "35" @default.
- W1996530407 isParatext "false" @default.
- W1996530407 isRetracted "false" @default.
- W1996530407 magId "1996530407" @default.
- W1996530407 workType "article" @default.