Matches in SemOpenAlex for { <https://semopenalex.org/work/W1996563530> ?p ?o ?g. }
- W1996563530 abstract "We examine how the two different mechanisms proposed historically for biological evolution compare for the determination of crystal structures from random initial lattice configurations. The Darwinian theory of evolution contends that the genetic makeup inherited at birth is the one passed on during mating to new offspring, in which case evolution is a product of environmental pressure and chance. In addition to this mechanism, Lamarck surmised that individuals can also pass on traits acquired during their lifetime. Here we show that the minimum-energy configurations of a binary ${A}_{1ensuremath{-}x}{B}_{x}$ alloy in the full $0ensuremath{le}xensuremath{le}1$ concentration range can be found much faster if the conventional Darwinian genetic progression---mating configurations and letting the lowest-energy (fittest) offspring survive---is allowed to experience Lamarckian-style fitness improvements during its lifetime. Such improvements consist of $Aensuremath{leftrightarrow}B$ transmutations of some atomic sites (not just atomic relaxations) guided by ``virtual-atom'' energy gradients. This hybrid evolution is shown to provide an efficient solution to a generalized Ising Hamiltonian, illustrated here by finding the ground states of face-centered-cubic ${text{Au}}_{1ensuremath{-}x}{text{Pd}}_{x}$ using a cluster-expansion functional fitted to first-principles total energies. The statistical rate of success of the search strategies and their practical applicability are rigorously documented in terms of average number of evaluations required to find the solution out of 400 independent evolutionary runs with different random seeds. We show that all exact ground states of a 12-atom supercell (${2}^{12}$ configurations) can be found within 330 total-energy evaluations, whereas a 36-atom supercell (${2}^{36}$ configurations) requires on average $39text{ }000$ evaluations. Thus, this problem cannot be currently addressed with confidence using costly energy functionals [e.g., density-functional theory (DFT) based] unless it is limited to $ensuremath{le}20$ atoms. The computational cost can be reduced at the expense of accuracy: Searching for all approximate-minimum-energy configurations (within 3 meV) of a 12- or 36-atom supercell requires on average 30 or 580 total-energy evaluations, respectively. Thus it could be addressed even by costly energy functionals such as density-functional theory." @default.
- W1996563530 created "2016-06-24" @default.
- W1996563530 creator A5007886751 @default.
- W1996563530 creator A5063867536 @default.
- W1996563530 date "2008-08-04" @default.
- W1996563530 modified "2023-10-16" @default.
- W1996563530 title "Identifying the minimum-energy atomic configuration on a lattice: Lamarckian twist on Darwinian evolution" @default.
- W1996563530 cites W1979531149 @default.
- W1996563530 cites W1981040219 @default.
- W1996563530 cites W1981522898 @default.
- W1996563530 cites W1984000621 @default.
- W1996563530 cites W1992315982 @default.
- W1996563530 cites W1992617006 @default.
- W1996563530 cites W2005149933 @default.
- W1996563530 cites W2005543043 @default.
- W1996563530 cites W2011928338 @default.
- W1996563530 cites W2012700578 @default.
- W1996563530 cites W2013520638 @default.
- W1996563530 cites W2015783060 @default.
- W1996563530 cites W2021143744 @default.
- W1996563530 cites W2024330948 @default.
- W1996563530 cites W2030117728 @default.
- W1996563530 cites W2039988857 @default.
- W1996563530 cites W2040977489 @default.
- W1996563530 cites W2052140732 @default.
- W1996563530 cites W2054795849 @default.
- W1996563530 cites W2067392846 @default.
- W1996563530 cites W2068561951 @default.
- W1996563530 cites W2068674173 @default.
- W1996563530 cites W2069697210 @default.
- W1996563530 cites W2071625617 @default.
- W1996563530 cites W2073820346 @default.
- W1996563530 cites W2078255695 @default.
- W1996563530 cites W2080837143 @default.
- W1996563530 cites W2087236956 @default.
- W1996563530 cites W2089863621 @default.
- W1996563530 cites W2090584394 @default.
- W1996563530 cites W2092188627 @default.
- W1996563530 cites W2093072507 @default.
- W1996563530 cites W2093726586 @default.
- W1996563530 cites W2124820885 @default.
- W1996563530 cites W2134319176 @default.
- W1996563530 cites W2149655632 @default.
- W1996563530 cites W2153887728 @default.
- W1996563530 cites W2159786140 @default.
- W1996563530 cites W3101548220 @default.
- W1996563530 cites W4238885544 @default.
- W1996563530 doi "https://doi.org/10.1103/physrevb.78.064102" @default.
- W1996563530 hasPublicationYear "2008" @default.
- W1996563530 type Work @default.
- W1996563530 sameAs 1996563530 @default.
- W1996563530 citedByCount "33" @default.
- W1996563530 countsByYear W19965635302013 @default.
- W1996563530 countsByYear W19965635302014 @default.
- W1996563530 countsByYear W19965635302015 @default.
- W1996563530 countsByYear W19965635302016 @default.
- W1996563530 countsByYear W19965635302017 @default.
- W1996563530 countsByYear W19965635302018 @default.
- W1996563530 countsByYear W19965635302019 @default.
- W1996563530 countsByYear W19965635302020 @default.
- W1996563530 countsByYear W19965635302021 @default.
- W1996563530 countsByYear W19965635302022 @default.
- W1996563530 crossrefType "journal-article" @default.
- W1996563530 hasAuthorship W1996563530A5007886751 @default.
- W1996563530 hasAuthorship W1996563530A5063867536 @default.
- W1996563530 hasConcept C121332964 @default.
- W1996563530 hasConcept C121864883 @default.
- W1996563530 hasConcept C149635348 @default.
- W1996563530 hasConcept C196919123 @default.
- W1996563530 hasConcept C24890656 @default.
- W1996563530 hasConcept C2524010 @default.
- W1996563530 hasConcept C2776196297 @default.
- W1996563530 hasConcept C2781204021 @default.
- W1996563530 hasConcept C33923547 @default.
- W1996563530 hasConcept C41008148 @default.
- W1996563530 hasConcept C58312451 @default.
- W1996563530 hasConcept C78458016 @default.
- W1996563530 hasConcept C86803240 @default.
- W1996563530 hasConceptScore W1996563530C121332964 @default.
- W1996563530 hasConceptScore W1996563530C121864883 @default.
- W1996563530 hasConceptScore W1996563530C149635348 @default.
- W1996563530 hasConceptScore W1996563530C196919123 @default.
- W1996563530 hasConceptScore W1996563530C24890656 @default.
- W1996563530 hasConceptScore W1996563530C2524010 @default.
- W1996563530 hasConceptScore W1996563530C2776196297 @default.
- W1996563530 hasConceptScore W1996563530C2781204021 @default.
- W1996563530 hasConceptScore W1996563530C33923547 @default.
- W1996563530 hasConceptScore W1996563530C41008148 @default.
- W1996563530 hasConceptScore W1996563530C58312451 @default.
- W1996563530 hasConceptScore W1996563530C78458016 @default.
- W1996563530 hasConceptScore W1996563530C86803240 @default.
- W1996563530 hasIssue "6" @default.
- W1996563530 hasLocation W19965635301 @default.
- W1996563530 hasOpenAccess W1996563530 @default.
- W1996563530 hasPrimaryLocation W19965635301 @default.
- W1996563530 hasRelatedWork W1519256499 @default.
- W1996563530 hasRelatedWork W1970085751 @default.
- W1996563530 hasRelatedWork W1971604578 @default.
- W1996563530 hasRelatedWork W1985078160 @default.
- W1996563530 hasRelatedWork W2020436656 @default.