Matches in SemOpenAlex for { <https://semopenalex.org/work/W1996681001> ?p ?o ?g. }
- W1996681001 endingPage "929" @default.
- W1996681001 startingPage "921" @default.
- W1996681001 abstract "Two artificial neural networks (ANN) for the early detection of prostate cancer in men with total prostate-specific antigen (PSA) levels from 2.5 to 4 ng/mL and from 4 to 10 ng/mL were prospectively developed. The predictive accuracy of the ANN was compared with that obtained by use of conventional statistical analysis of standard PSA parameters.Consecutive men with a serum total PSA level between 4 and 10 ng/mL (n = 974) and between 2.5 and 4 ng/mL (n = 272) were analyzed. A separate ANN model was developed for each group of patients. Analyses were performed to determine the presence of prostate cancer.The area under the receiver operator characteristic (ROC) curve (AUC) was 87.6% and 91.3% for the 2.5 to 4 ng/mL and 4 to 10 ng/mL ANN models, respectively. For the latter model, the AUC generated by the ANN was significantly higher than that produced by the single variables of total PSA, percentage of free PSA, PSA density of the transition zone (TZ), and TZ volume (P <.01), but not significantly higher compared with multivariate analysis. For the 2.5 to 4 ng/mL model, the AUC of the ANN ROC curve was significantly higher than the AUCs for percentage of free PSA (P =.0239), PSA-TZ (P =.0204), and PSA density and total prostate volume (P <.01 for both).The predictive accuracy of the ANN was superior to that of conventional PSA parameters. ANN models might change the way patients referred for early prostate cancer detection are counseled regarding the need for prostate biopsy." @default.
- W1996681001 created "2016-06-24" @default.
- W1996681001 creator A5000822230 @default.
- W1996681001 creator A5012397578 @default.
- W1996681001 creator A5024037114 @default.
- W1996681001 creator A5051516490 @default.
- W1996681001 creator A5064993820 @default.
- W1996681001 creator A5090946201 @default.
- W1996681001 date "2002-02-15" @default.
- W1996681001 modified "2023-10-17" @default.
- W1996681001 title "Novel Artificial Neural Network for Early Detection of Prostate Cancer" @default.
- W1996681001 cites W127182478 @default.
- W1996681001 cites W1546313835 @default.
- W1996681001 cites W1847856759 @default.
- W1996681001 cites W1964094141 @default.
- W1996681001 cites W1980188241 @default.
- W1996681001 cites W1995631765 @default.
- W1996681001 cites W2007082372 @default.
- W1996681001 cites W2012539595 @default.
- W1996681001 cites W2013361041 @default.
- W1996681001 cites W2014706807 @default.
- W1996681001 cites W2020738847 @default.
- W1996681001 cites W2021377019 @default.
- W1996681001 cites W2024394946 @default.
- W1996681001 cites W2024949519 @default.
- W1996681001 cites W2030353873 @default.
- W1996681001 cites W2047177550 @default.
- W1996681001 cites W2061129859 @default.
- W1996681001 cites W2070701999 @default.
- W1996681001 cites W2086826587 @default.
- W1996681001 cites W2088438780 @default.
- W1996681001 cites W2090944650 @default.
- W1996681001 cites W2108596183 @default.
- W1996681001 cites W2120565180 @default.
- W1996681001 cites W2155502808 @default.
- W1996681001 cites W2171655721 @default.
- W1996681001 cites W2328176404 @default.
- W1996681001 cites W2330292521 @default.
- W1996681001 cites W2335679869 @default.
- W1996681001 cites W4320801182 @default.
- W1996681001 doi "https://doi.org/10.1200/jco.2002.20.4.921" @default.
- W1996681001 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/11844812" @default.
- W1996681001 hasPublicationYear "2002" @default.
- W1996681001 type Work @default.
- W1996681001 sameAs 1996681001 @default.
- W1996681001 citedByCount "133" @default.
- W1996681001 countsByYear W19966810012012 @default.
- W1996681001 countsByYear W19966810012013 @default.
- W1996681001 countsByYear W19966810012014 @default.
- W1996681001 countsByYear W19966810012015 @default.
- W1996681001 countsByYear W19966810012016 @default.
- W1996681001 countsByYear W19966810012017 @default.
- W1996681001 countsByYear W19966810012018 @default.
- W1996681001 countsByYear W19966810012019 @default.
- W1996681001 countsByYear W19966810012020 @default.
- W1996681001 countsByYear W19966810012021 @default.
- W1996681001 countsByYear W19966810012022 @default.
- W1996681001 crossrefType "journal-article" @default.
- W1996681001 hasAuthorship W1996681001A5000822230 @default.
- W1996681001 hasAuthorship W1996681001A5012397578 @default.
- W1996681001 hasAuthorship W1996681001A5024037114 @default.
- W1996681001 hasAuthorship W1996681001A5051516490 @default.
- W1996681001 hasAuthorship W1996681001A5064993820 @default.
- W1996681001 hasAuthorship W1996681001A5090946201 @default.
- W1996681001 hasConcept C121608353 @default.
- W1996681001 hasConcept C126322002 @default.
- W1996681001 hasConcept C126894567 @default.
- W1996681001 hasConcept C143998085 @default.
- W1996681001 hasConcept C2776235491 @default.
- W1996681001 hasConcept C2780192828 @default.
- W1996681001 hasConcept C2781406297 @default.
- W1996681001 hasConcept C2989005 @default.
- W1996681001 hasConcept C38180746 @default.
- W1996681001 hasConcept C58471807 @default.
- W1996681001 hasConcept C71924100 @default.
- W1996681001 hasConcept C76318530 @default.
- W1996681001 hasConceptScore W1996681001C121608353 @default.
- W1996681001 hasConceptScore W1996681001C126322002 @default.
- W1996681001 hasConceptScore W1996681001C126894567 @default.
- W1996681001 hasConceptScore W1996681001C143998085 @default.
- W1996681001 hasConceptScore W1996681001C2776235491 @default.
- W1996681001 hasConceptScore W1996681001C2780192828 @default.
- W1996681001 hasConceptScore W1996681001C2781406297 @default.
- W1996681001 hasConceptScore W1996681001C2989005 @default.
- W1996681001 hasConceptScore W1996681001C38180746 @default.
- W1996681001 hasConceptScore W1996681001C58471807 @default.
- W1996681001 hasConceptScore W1996681001C71924100 @default.
- W1996681001 hasConceptScore W1996681001C76318530 @default.
- W1996681001 hasIssue "4" @default.
- W1996681001 hasLocation W19966810011 @default.
- W1996681001 hasLocation W19966810012 @default.
- W1996681001 hasOpenAccess W1996681001 @default.
- W1996681001 hasPrimaryLocation W19966810011 @default.
- W1996681001 hasRelatedWork W1992657261 @default.
- W1996681001 hasRelatedWork W1997838109 @default.
- W1996681001 hasRelatedWork W2038565121 @default.
- W1996681001 hasRelatedWork W2148869351 @default.
- W1996681001 hasRelatedWork W2373651588 @default.