Matches in SemOpenAlex for { <https://semopenalex.org/work/W1996756087> ?p ?o ?g. }
- W1996756087 endingPage "159" @default.
- W1996756087 startingPage "142" @default.
- W1996756087 abstract "Bone is susceptible to early diagenesis, and its carbon and oxygen isotopic compositions have been suggested to reflect conditions in the soil environment and shallow subsurface during fossilization. This implies open-system recrystallization involving mass exchange of carbon and oxygen among bioapatite, soil water, and DIC. Such recrystallization would also redistribute isotopic clumping (including 13C–18O bonds), leading to the possibility that the carbonate clumped isotope compositions of fossil bone record ground temperature during early diagenesis. We assess this possibility by studying Quaternary mammalian fossil bone from subtropical to polar latitudes: if recrystallization is early and pervasive, clumped isotope derived temperatures, T(Δ47), should closely mirror latitudinal gradients in ground temperature. Excluding results from a mummified specimen yielding T(Δ47) = 38 °C (that is, indistinguishable from mammalian body temperature), we find that T(Δ47) values are intermediate between mammalian body temperature and ground temperature, suggesting partial recrystallization of bone carbonate. XRD analyses show that the nature and extent of diagenesis varies among the samples and does not relate in a straightforward manner to T(Δ47). No clear correlation exists between T(Δ47) and mean annual temperature or mean warm season temperature. Furthermore, bone tends to retain the 18O-enriched signature of body water, suggesting incomplete oxygen isotope exchange with meteoric waters. Incomplete carbon and oxygen isotope exchange between bone carbonate and soil waters is also indicated for a set of late Miocene bone–enamel pairs from a sequence of stacked paleosols in northern China. Analysis of bone as old as Early Cretaceous shows that bone carbonate is susceptible to later diagenesis at elevated burial temperatures, although T(Δ47) does not closely conform to maximum burial temperature, again suggesting partial recrystallization, or recrystallization during different stages of the burial and exhumation circuit. These results show that carbon, oxygen, and ‘clumped’ isotopes in fossil bone are capable of recording aspects of early diagenesis and the subsequent burial and exhumation history, but that distinguishing among different effects is challenging. However, clumped isotopes in bone can provide useful directional constraints on past temperatures. For example, T(Δ47) values higher than body temperature necessarily place lower limits on maximum burial temperatures, and those lower than body temperature place upper limits on minimum fossilization temperatures." @default.
- W1996756087 created "2016-06-24" @default.
- W1996756087 creator A5040439570 @default.
- W1996756087 creator A5086247082 @default.
- W1996756087 date "2014-09-01" @default.
- W1996756087 modified "2023-09-24" @default.
- W1996756087 title "Assessment of the clumped isotope composition of fossil bone carbonate as a recorder of subsurface temperatures" @default.
- W1996756087 cites W154343811 @default.
- W1996756087 cites W1548800328 @default.
- W1996756087 cites W1965510805 @default.
- W1996756087 cites W1968474493 @default.
- W1996756087 cites W1972758635 @default.
- W1996756087 cites W1973156665 @default.
- W1996756087 cites W1975550927 @default.
- W1996756087 cites W1975681870 @default.
- W1996756087 cites W1977055850 @default.
- W1996756087 cites W1977461880 @default.
- W1996756087 cites W1978418580 @default.
- W1996756087 cites W1988354507 @default.
- W1996756087 cites W1994076869 @default.
- W1996756087 cites W1997170235 @default.
- W1996756087 cites W1999241836 @default.
- W1996756087 cites W1999568277 @default.
- W1996756087 cites W2005674369 @default.
- W1996756087 cites W2011729241 @default.
- W1996756087 cites W2012704052 @default.
- W1996756087 cites W2013760012 @default.
- W1996756087 cites W2015227881 @default.
- W1996756087 cites W2016217705 @default.
- W1996756087 cites W2017913935 @default.
- W1996756087 cites W2018215920 @default.
- W1996756087 cites W2023004847 @default.
- W1996756087 cites W2023928164 @default.
- W1996756087 cites W2026904426 @default.
- W1996756087 cites W2029473169 @default.
- W1996756087 cites W2035331306 @default.
- W1996756087 cites W2036227390 @default.
- W1996756087 cites W2050914878 @default.
- W1996756087 cites W2051586306 @default.
- W1996756087 cites W2056017816 @default.
- W1996756087 cites W2056409851 @default.
- W1996756087 cites W2059731854 @default.
- W1996756087 cites W2062768654 @default.
- W1996756087 cites W2066050045 @default.
- W1996756087 cites W2069195769 @default.
- W1996756087 cites W2069320488 @default.
- W1996756087 cites W2079972886 @default.
- W1996756087 cites W2083879582 @default.
- W1996756087 cites W2086674479 @default.
- W1996756087 cites W2087109988 @default.
- W1996756087 cites W2087156778 @default.
- W1996756087 cites W2092826858 @default.
- W1996756087 cites W2093524900 @default.
- W1996756087 cites W2098751466 @default.
- W1996756087 cites W2101837538 @default.
- W1996756087 cites W2103484151 @default.
- W1996756087 cites W2103599000 @default.
- W1996756087 cites W2106839072 @default.
- W1996756087 cites W2111219288 @default.
- W1996756087 cites W2111387972 @default.
- W1996756087 cites W2118131194 @default.
- W1996756087 cites W2118446958 @default.
- W1996756087 cites W2121783130 @default.
- W1996756087 cites W2128351780 @default.
- W1996756087 cites W2130901935 @default.
- W1996756087 cites W2132295818 @default.
- W1996756087 cites W2135372112 @default.
- W1996756087 cites W2135976972 @default.
- W1996756087 cites W2140488683 @default.
- W1996756087 cites W2146451541 @default.
- W1996756087 cites W2151893686 @default.
- W1996756087 cites W2153683587 @default.
- W1996756087 cites W2155995866 @default.
- W1996756087 cites W2159821300 @default.
- W1996756087 cites W2163060817 @default.
- W1996756087 cites W2167021561 @default.
- W1996756087 cites W2320388366 @default.
- W1996756087 cites W4251478252 @default.
- W1996756087 doi "https://doi.org/10.1016/j.gca.2014.05.026" @default.
- W1996756087 hasPublicationYear "2014" @default.
- W1996756087 type Work @default.
- W1996756087 sameAs 1996756087 @default.
- W1996756087 citedByCount "13" @default.
- W1996756087 countsByYear W19967560872015 @default.
- W1996756087 countsByYear W19967560872016 @default.
- W1996756087 countsByYear W19967560872017 @default.
- W1996756087 countsByYear W19967560872018 @default.
- W1996756087 countsByYear W19967560872019 @default.
- W1996756087 countsByYear W19967560872020 @default.
- W1996756087 countsByYear W19967560872021 @default.
- W1996756087 countsByYear W19967560872022 @default.
- W1996756087 countsByYear W19967560872023 @default.
- W1996756087 crossrefType "journal-article" @default.
- W1996756087 hasAuthorship W1996756087A5040439570 @default.
- W1996756087 hasAuthorship W1996756087A5086247082 @default.
- W1996756087 hasConcept C107872376 @default.
- W1996756087 hasConcept C121332964 @default.
- W1996756087 hasConcept C12294951 @default.